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 Skin cancer is one of the most common types of cancer, often caused by 

prolonged exposure to ultraviolet (UV) radiation. While visual inspection 

can provide a preliminary diagnosis, accurate identification typically 

requires a biopsy, an invasive, costly, and time-consuming procedure. 

Convolutional neural networks (CNNs) offer a promising alternative by 

achieving high diagnostic accuracy with reduced time and cost. Despite 

numerous studies in this area, the influence of training hyperparameters, 

particularly batch size, has not been extensively examined in the context of 

skin cancer detection. This study explores the effect of batch size on the 

performance of the ResNet18 network, known for its balance between 

accuracy and computational efficiency in medical imaging tasks. Batch size, 

defined as the number of training samples processed before weight updates, 

plays a critical role in model performance. Seven batch sizes (4, 8, 16, 32, 

64, 128, and 256) were evaluated. Results revealed that smaller batch sizes 

led to lower performance, while a batch size of 32 achieved the highest 

multi-class accuracy. Batch sizes of 64 and 128 improved precision and 

recall. However, increasing the batch size beyond 128 did not yield 

additional benefits. Therefore, batch sizes between 32 and 128 are 

recommended for optimal results. 
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1. INTRODUCTION 

Skin cancer ranks as the fourth most prevalent cancer, with over nine thousand individuals diagnosed daily 

in the United States [1]. This cancer develops from the uncontrolled growth of skin cells, triggered by mutations 

caused by ultraviolet (UV) radiation, including sunlight [2]. Skin cancer is classified into benign and malignant 

tumors based on malignancy. Melanoma is considered the most dangerous type due to its high tendency to spread 

through the bloodstream to other body parts, causing severe damage to organs and even death if left untreated [2]. A 

major challenge in melanoma detection is its high visual similarity to melanocytic nevus, a non-cancerous and 

harmless mole, making early detection crucial for accurate differentiation. Besides melanoma, which originates from 

Melanocytes, the cells that produce melanin, the pigment responsible for skin color, there are two other malignant 

types of skin cancer: “Basal Cell Carcinoma” (BCC) and “Squamous Cell Carcinoma” (SCC). BCC, the most 

common skin cancer, originates from basal cells in the innermost layer of the epidermis. SCC, the second most 

common type, arises from squamous cells in the outermost layer of the epidermis and has a more aggressive 

behavior than BCC, making early diagnosis essential to prevent further complications [2]. 

Skin lesions are primarily diagnosed through naked-eye examination. Although this approach is 

convenient, its diagnostic accuracy is limited to about 60%, even for experienced dermatologists [3]. For better 

visualization, lesions can be examined under good lighting conditions and with magnifying equipment using a 
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technique called dermoscopy, which improves diagnostic accuracy to approximately 84% [4]. For a definitive 

diagnosis, a biopsy is required. This process requires the removal of a tissue sample from the lesion for microscopic 

analysis. However, this method requires well-equipped laboratories, making it both costly and time-consuming, 

which can delay treatment. Additionally, in remote or underserved areas, limited access to such facilities may 

prevent timely diagnosis, allowing the cancer to progress further before proper treatment can be administered [5].  

To achieve diagnostic convenience with relatively high accuracy, many machine learning (ML) algorithms 

have been employed over the last two decades for this task. These include logistic regression (LR) [6], artificial 

neural networks (ANN) [7], decision trees (DT) [8], random forests (RF) [9], k-nearest neighbors (KNN) [10], and 

support vector machines (SVM) [11]. In these approaches, features were manually extracted based on the ABCDE 

criteria (“asymmetry, border irregularity, color variation, diameter, and evolution”) and then fed into the algorithms 

[12]. However, this diagnostic approach did not significantly improve accuracy compared to visual inspection alone 

[13]. Moreover, it required manual feature extraction by specialized personnel. Later, researchers adopted 

convolutional neural networks (CNNs), an automated feature extraction technique that has proven successful in 

various fields, including medical imaging [14]. CNNs have achieved relatively high accuracy in diagnosing and 

classifying skin lesions [14]. The training process of CNNs depends on several parameters, such as network 

architecture, network depth, the loss function used to measure the error between predicted and true labels, the 

optimizer used to update network weights, and the batch size, which specifies the number of images processed in 

each iteration during training. Although these parameters have been comprehensively studied in many fields, 

research on skin cancer detection has largely focused on the impact of network architecture while neglecting other 

factors. Most studies emphasize the effect of architecture while omitting the influence of other training parameters. 

Yilmaz et al. [15] performed a skin cancer classification task using three lightweight CNN architectures: 

MobileNet [16], MobileNetV2 [17], and NASNetMobile [18]. The study evaluated the effect of different batch sizes 

(16, 32, and 64) on the ISIC2017 dataset [19]. For the first architecture, MobileNet, batch sizes of 16 and 32 

performed well, with a slight advantage for 32. However, a batch size of 64 resulted in significantly lower 

performance. For MobileNetV2, a batch size of 16 yielded the best performance, and the same was observed for 

NASNetMobile. Overall, the highest accuracy (approximately 82.00%) was achieved using NASNetMobile with a 

batch size of 16. 

Islam et al. [20] conducted a binary classification task to differentiate benign from malignant skin lesions 

using a ResNet50 [21] CNN trained on a dataset from the ISIC archive [22]. They compared batch sizes of 32 and 

64, finding that a batch size of 32 yielded the best accuracy (approximately 92.70%). 

This research aims to perform a study about the effect of the batch size on skin cancer detection using the 

ResNet18 [21] architecture, as it is widely used for this task and offers an excellent trade-off between accuracy and 

computational complexity. Additionally, ResNet18 has low GPU VRAM requirements, making it feasible to 

experiment with larger batch sizes in this study. 

 

 

2. METHODOLOGY 

This section discusses the dataset, preprocessing techniques, CNN architecture, training process, and 

evaluation metrics in detail. 

 

2.1.  Dataset 

The ISIC2018 [22] dataset is used to train the ResNet18 [21] network. The training subset consists of 

10,015 dermoscopic images categorized into 7 classes: dermatofibroma (DF), “benign keratosis lesion” (BKL), 

“vascular lesion” (VASC), “actinic keratoses and intraepithelial carcinoma” (AKIEC), “melanocytic nevus” (NV), 

melanoma (MEL), and “basal cell carcinoma” (BCC). The validation and test subsets are provided separately, 

containing 193 and 1,512 images, respectively. For the training subset, the number of dermoscopic images per each 

class is represented in Table 1. 

 

Table 1. Number of image samples in the ISIC2018 dataset per each class. 
Class Name No. of images 

BKL 1099 

NV 6705 

MEL 1113 
VASC 142 

DF 115 

AKIEK 327 
BCC 514 



Dijlah Journal of Engineering Sciences (DJES)                Vol. 2, No. 2, June 2025, pp. 75-85 

ISSN:  Printed: 3078-9656, E: 3078-9664, paper ID: 39 
 

77 

 

2.2.  Preprocessing techniques 

Input images are resized to 224×224 pixels before being fed into ResNet18, as this network requires a fixed 

input size. The images are also normalized by mapping pixel values from the [0,255] scale to the [0,1] range. This 

process helps prevent exploding gradients, stabilizes the network during training, and speeds up convergence. 

Furthermore, normalization reduces bias toward high-value pixels, ensuring that the CNN treats all inputs equally 

and focuses on patterns rather than absolute intensity differences. The normalization process is defined by Equation 

(1) [23]. 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥

255
  (1) 

Where, x is the pixel intensity of input image. 

 

2.3.  CNN architecture 

Residual Network, commonly abbreviated as ResNet, is  a popular CNN architecture introduced to address 

the “vanishing gradient” problem, which arises when a CNN becomes deeper, causing gradients to diminish in 

value. The reduction occurs due to the repeated multiplication of activation function outputs, each of which is less 

than one due to the normalization process. As the network depth increases, the gradients become even smaller. Since 

gradients are directly responsible for updating network weights, extremely small gradients lead to minimal weight 

updates, resulting in a very slow training process. ResNet overcomes this issue by incorporating shortcuts known as 

“residual connections,” which allow feature maps to bypass certain layers and be passed directly to subsequent 

layers. This architecture facilitates the flow of information, leading to faster convergence and reduced training time. 

The basic residual block is shown in Figure 1, where the shortcut, denoted as “x identity,” is added to the output side 

of the block [21]. 

 

 
 

Figure 1. The residual basic block structure from He et al. [21] 
 

ResNet18 have 18 convolutional layers divided into 8 residual blocks. The entire architecture of this 

network is detailed in Table 2 [21]. 

 

Table 2. The ResNet18 architecture. 
Layer name Output size Details 

conv1 112×112 7×7, 64, stride 2 

conv2_x 56×56 [
3 × 3, 64 

3 × 3, 64 
] × 2 

conv3_x 28×28 [
3 × 3, 128  

3 × 3, 128  
] × 2 

conv4_x 14×14 [
3 × 3, 256  

3 × 3, 256  
] × 2 

conv5_x 7×7 [
3 × 3, 512  

3 × 3, 512  
] × 2 

- 1×1 Average pooling, Fully connected layer, Softmax 

 

CNNs are used as automated feature extractors, where network weights are initially randomized and 

adjusted during training to minimize the loss function between the predicted probabilities and the true labels. In this 

study, the “Cross-Entropy Loss Function” is utilized, as it is commonly preferred for classification tasks. The loss 

function is described in Equation (2) [23]. 
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ℒ = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐(log �̂�𝑖,𝑐)𝐶

𝑐=1
𝑁
𝑖=1   (2) 

Here, 𝑁 is the total number of samples. 𝐶 is the number of classes. 𝑦𝑖,𝑐 is the true label for the 𝑖th
 sample and 𝑐th

 

class. �̂�𝑖,𝑐 is the predicted probabilty for (𝑖, 𝑐) indices. 

The loss function is theoretically calculated for each data sample (image) to determine the gradient for each 

weight in the network. The arithmetic mean of all gradients is then computed to determine to update the network 

weights. The passage of the entire training dataset through the network during the learning process is referred to as 

an epoch. In practice, calculating loss and gradients for the entire dataset at once is infeasible due to the high GPU 

VRAM requirements. To address this, “Stochastic Gradient Descent” (SGD) is used. This optimization technique 

follows the same process but divides the training set into smaller batches, allowing computations to be performed in 

steps [23]. This study will examine the impact of batch size on training results. 

 

2.4.  Training process 

The CNN model is customized and trained on the ISIC2018 [22] dataset using the “Deep Learning 

Toolbox” (version 14.3) in the MATLAB environment, running on a “Quadro RTX 5000” GPU with 16GB of 

VRAM. The customization involves replacing the fully connected layer with one that has seven outputs, 

corresponding to the number of classes in the dataset. The classification layer is also replaced to generate seven 

output predictions instead of the 1,000 outputs originally designed for ImageNet [24], the dataset on which the 

network was pretrained. To leverage the pretrained weights, the first three convolutional layers are frozen so that 

subsequent layers can train on these low-level features. The training process is conducted over 30 epochs, utilizing a 

scheduled learning rate, where the rate decreases every 10 epochs by a factor of 10. Training is performed using 

“Stochastic Gradient Descent with Momentum” (SGDM), with a momentum value of 0.9 to accelerate convergence. 

The batch size is varied to analyze its effect on model performance. All hyperparameters are detailed in Table 3. 

 

Table 3. Training hyperparameters. 
Hyperparameter Value 

Epochs 30 

Optimizer SGDM 
Learning rate (0.01) , (0.001) , (0.0001) 

Batch size 4, 8, 16, 32, 64, 128, 256 

Momentum 0.9 
L2 Regularization 0.0001 

 

To combat overfitting, data augmentation is applied during training by performing image rotation, flipping, 

rescaling, and shifting. Image rotation is applied at a random angle between -45̊ and 45̊ degrees. Rescaling is 

performed within a random range of 0.9 to 1.2. Flipping is carried out randomly along the x-axis and y-axis. Lastly, 

shifting is performed both vertically and horizontally with random values ranging from -30 to 30 pixels. Figure 2 

shows an example of the augmentation process performed on original dermoscopic images.  

 

 
 

Figure 2. Example of the augmenation techniques performed during the training process 
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2.5.  Evaluation metrics 

Evaluation metrics are essential for understanding the effectiveness of the CNN model in classifying skin 

cancer lesions and assessing the impact of batch size in this study. Multi-class accuracy is the most commonly used 

metric to evaluate CNN model performance. It measures the ratio of correct predictions to the total number of data 

samples, as expressed in Equation (3) [23].  

𝑀𝑢𝑙𝑡𝑖 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (3) 

Here, TP represents true positive predictions, TN represents true negative predictions, FP represents false positive 

predictions, and FN represents false negative predictions.  

Accuracy could be calculated for every class individually, as expressed in Equation (4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠(𝑘) =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠(𝑘)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑐𝑙𝑎𝑠𝑠(𝑘)
  (4) 

Precision is another important metric to evaluate the model in the classification task, as it measures the 

proportion of correctly predicted positive cases (e.g., malignant lesions) out of all predicted positive cases. It is 

expressed in Equation (5) [23]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (5) 

Since this study focuses on malignant lesions, accuracy alone is not sufficient to assess model performance. 

Recall (sensitivity) is introduced to measure how well the model identifies actual positive cases. It is expressed in 

Equation (6) [23]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (6) 

The F1-score represents the harmonic mean of precision and recall, as expressed in Equation (7) [23]. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

All the previously mentioned metrics can be calculated using a table called the confusion matrix, which 

illustrates the overall performance of the network by detailing the true positives, true negatives, false positives, and 

false negatives for each class in the dataset [25]. 

On the other hand, the “Receiver Operating Characteristic” (ROC) curve graphically represents the 

relationship between the true positive rate and the false positive rate. Another important metric, the “Area Under the 

Curve” (AUC), measures the area under the ROC curve. A higher AUC value indicates better model performance 

[25]. 

 

 

3. RESULTS 

In this section, a comprehensive performance comparison is presented for the ResNet18 model trained with 

seven different batch sizes: 4, 8, 16, 32, 64, 128, and 256. The main objective of the analysis is to conclude the most 

appropriate batch size for optimizing the accuracy and efficiency of skin cancer detection. To ensure a thorough 

evaluation, the model’s performance is assessed using key metrics such as accuracy, Recall, Precision, and F1-score. 

The results corresponding to each batch size are systematically summarized in Table 4, providing insights into the 

trade-offs associated with different batch configurations. This analysis aims to identify an optimal batch size that 

balances accuracy and training stability, ultimately contributing to improved classification performance in real-

world skin cancer detection applications. 

 

Table 4. The evaluation metrics for ResNet18 model with multiple batch sizes. 
Batch size Multi-class accuracy Accuracy Precision Recall F1-Score AUC 

4 76.59% 93.31% 61.98% 55.18% 57.74% 93.37% 

8 76.65% 93.33% 62.27% 55.32% 57.77% 93.30% 
16 78.84% 93.95% 69.97% 59.39% 63.49% 95.36% 

32 83.73% 95.35% 78.50% 68.93% 73.00% 96.66% 

64 82.34% 94.95% 76.29% 69.39% 72.24% 96.07% 
128 83.07% 95.16% 79.49% 69.22% 73.20% 96.59% 

256 82.21% 94.92% 77.65% 66.82% 70.07% 96.38% 
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Table 4 shows that the CNN model performed poorly with low batch sizes but improved progressively until 

reaching a batch size of 32, where it achieved the highest multi-class accuracy. Other metrics showed further 

improvements with batch sizes of 64 and 128. However, increasing the batch size beyond this did not provide 

additional benefits. The training accuracy and loss curves for each batch size are illustrated in Figure 3. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

  Figure 3. The accuracy and loss curves for batch sizes of (a) 4 (b) 8 (c) 16 (d) 32 (e) 64 (f) 128 
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(g) 

 

Continuation of Figure 3. The accuracy and loss curves for batch sizes of (g) 256 

 

Figure 4 shows the confusion matrices for the designated batch sizes. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 4. The confusion matrices for batch sizes of (a) 4 (b) 8 (c) 16 (d) 32 
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(e) (f) 

 
(g) 

 

Continuation of Figure 4. The confusion matrices for batch sizes of (e) 64 (f) 128 (g) 256 

 

Figure 5 shows the ROC curves for earch batch size. 

 

  
(a) (b) 

 

Figure 5. The ROC curves for batch sizes of (a) 4 (b) 8 
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(c) (d) 

  
(e) (f) 

 
(g) 

 

Continuation of Figure 5. The ROC curves for batch sizes of (c) 16 (d) 32 (e) 64 (f) 128 (g) 256 

 
 

4. CONCLUSION 

This study analyzed the effect of batch size on the performance results of the ResNet18 CNN for skin 

cancer classification using a seven-class dataset. Seven batch sizes were evaluated: 4, 8, 16, 32, 64, 128, and 256. 

The model performed poorly with smaller batch sizes, while a batch size of 32 yielded the highest multi-class 

accuracy. Batch sizes of 64 and 128 resulted in improved precision and recall. However, further increasing the batch 

size beyond 128 did not enhance performance. Based on these findings, limiting the batch size between 32 and 128 

is recommended for optimal skin cancer classification using the ResNet18 CNN model. Future work could explore 
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the impact of batch size on other deep learning architectures or investigate adaptive batch size techniques to further 

enhance performance. 
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