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 The Internet of Things' growth (IoT) has also led to an increase in damaging 

attacks that seriously jeopardize unprotected IoT equipment. IoT 

technologies therefore raise a number of security and privacy concerns.  

Anomalies in IoT systems may enable an attacker to infiltrate a system, 

often resulting in unforeseen interruptions or sensor malfunctions. 

Consequently, it is indispensable to monitor the unforeseen occurrences 

resulting from sensor inputs.   This study evaluates the efficacy of an 

ensemble mechanism knowledge model against a conventional learning 

method for detecting attacks and anomalies inside an IoT smart home 

environment, using a categorical dataset of mainSimulationAccessTraces 

traffic data.   To achieve optimal anomaly detection outcomes, we use the 

Random Forest methodology to consolidate the most effective models 

subsequent to training each model using the training dataset.  This paper 

elucidates many metrics and evaluation models while also providing a 

complete explanation of the training strategy.   We also compare our 

findings to those of comparable model versions.   Finally, we discuss 

difficulties and future projects. 
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1. INTRODUCTION  

 Significant progress has been made in the creation and use of Internet of Things plans. In large part, this is 

because of recently created, sophisticated IoT device features that enable applications across various businesses and 

disciplines. 

IoT enables real-time Internet-based machine-to-machine communication.  Because of enabling 

technologies such as remote servers, practically all IoT devices in use today can send data from their sensors to 

authorized cloud infrastructures.    Sensors in an Internet of Things device may detect changes in their surroundings. 

 A temperature sensor, for instance, monitors its surroundings and is useful for a variety of applications, 

including water temperature management, building temperature control, and refrigeration.  Similar to this, there are 

a number of sensors, such as GPS, accelerometer, pressure, humidity, and more.  Depending on the needs of the 

device, each Internet of Things application has a certain function. 

IoT has a wide range of uses and domains, including the following: the field of health  [1]   , for tracking 

and identifying human action; battles[2], to counter emerging dangers; the manufacturing sector [3], to interpret and 

intelligence the status and functionality of machinery; smart families [4], to manage smart illumination systems, 

PCs, Use applications include studying climate change, weather, and disaster predictions in environmental 

monitoring [6], home applications, safety cameras, and lights in the transportation sector [5], and many more.  The 

increased availability of these smart devices may lead to a rise in possible security flaws.  Among the primary 

objectives of IoT technology are unavoidable monitoring, anomaly identification, and environmental change or drift 

detection.  
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A popular area of research, anomaly detection in IoT devices is a relatively recent discipline. Anything that 

is "other than" what is considered "normal" behavior can be considered an anomaly. Our goal is to detect the 

development of novel events that cannot be explained by the existing models in order to maximize IoT adoption.  

The goal of anomaly detection is to find anomalous activity in high-dimensional data for applications like 

smart IoT cameras in IoT smart homes. Additionally, data entry problems can be automatically identified and 

corrected by anomaly detection. In this article, we focus on seven types of anomalies: malicious activity, data 

probing, DDoS assaults, network scanning, illegal control, misconfiguration, and monitoring occur inside a smart 

home setting.    These irregularities provide an attacker the opportunity to undermine the security and privacy of a 

smart home user.    In light of this, we address the following two research issues: 

1) In an Internet of Things setting, how can we spot anomalies and dangers? 

2) How can we develop a machine learning-based model that outperforms the current state-of-the-art 

methods and is tailored for a categorical IoT dataset? 

 This study employs ensemble learning to mitigate volatility and bias while enhancing classification 

outcomes for anomaly detection across several sensor types often seen in an IoT environment.   In our analysis, we 

employ a variety of classification and regression methodologies, including Naive Bayes, Decision Trees (DT), 

Support Vector Machines (SVM), k-Nearest Neighbors (kNN), Linear Discriminant Analysis (LDA), Random 

Forests, Logistic Regression, Multi-Layer Perceptrons (MLP), and Artificial Neural Networks (ANN).  The same 

training data is then amalgamated with the outcomes to construct a conclusive prediction model.  

Our approach then determines an ensemble model for the categorical dataset that produces the best 

anomaly detection and the fewest false positives. Our method produces satisfactory results by using ensemble 

learning in categorical data. Therefore, the following are our contributions: 

1) We present and put into practice an attack and anomaly detection mechanism based on ensemble 

learning, employing multi-class classification on categorical IoT traffic trace datasets instead of binary 

classification. 

2) We demonstrate how, for attack and anomaly detection systems in IoT contexts, ensemble learning 

models perform better than conventional machine learning. 

3) We compare Our approach's performance in comparison to other existing approaches. 

4) Our proposed method identifies an ensemble model on the categorical dataset that achieves optimal 

anomaly detection with minimal false positives. 

This paper's remaining sections are organized as follows: The relevant literature on methods for anomaly 

identification in diverse applications is reviewed in section II. The many evaluation models that are employed in our 

system are described in depth in Section III. We outline the assessment metrics that were employed in the paper to 

assess our model's performance in section IV. The suggested method is presented in part V, and the system details, 

dataset evaluation, and results are discussed in section VI. Section VII presents our findings and recommendations 

for further research. 

 

 

2.     RELATED WORK

Despite technological advancements, implementation of IoT still faces security, privacy, and authentication 

risks [7]-[8]-[9]-[10] . An Internet of Things device can be heterogeneous by combining numerous sensors, such as 

smart wearables with GPS, gyroscope, and accelerometer, clever drones with GPS and camera, and so on. 

In addition, an Internet of Things device is connected to other devices and applications, which makes it 

vulnerable to cybercrimes. The quantity and frequency of such attacks have increased, leading to a notable increase 

in study in this field [11]–[12]-[13]-[14]. In spite of this, hackers try to exploit the network and private information 

of individuals and/or companies by breaking into IoT systems. 

In order to lessen the detrimental belongings on these schemes, it is now more suitable to detect these 

intrusions early on.  A multi-platform for monitoring and identifying irregularities in IoT systems that takes 

heterogeneity into account was proposed by Stiawan et al. in [15].  Their method addresses the problem of broken 

devices by keeping an eye on the Internet of Things network and creating a comprehensive model for early anomaly 

identification. 

Aebebe et al. assert that deep knowledge replicas excel in accuracy, untrue alarm taxes, and scalability, as 

shown in [16].   Sai et al. in [17] demonstrate that using carbon-based sensors with RFID is an effective method to 

bolster the security of the Internet of Things ecosystem. 
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To detect anomalies in resource-constrained IoT devices, Al-kadi in [18] aimed to create an exceptionally 

lightweight deep packet method capable of distinguishing between normal and abnormal payloads.   Hoang et al. 

[19] introduced a detection approach that employs the Hidden Markov Model (HMM) to identify all denial-of-

service (DoS) attacks in test traces and reduces the training duration by 60%.   In [20], Sophia et al. introduce an 

intrusion detection system that employs sliding windows and support vector machines (SVMs).   The technology 

recognized selective forwarding attacks and black holes.   Heba et al. [21] developed a multi-layer model that 

employed a C5 decision tree to improve the accuracy of intrusion detection.   Lyu et al. proposed a distributed 

system for Fog-Empowered anomaly detection that capitalizes on the hyper-ellipsoidal clustering method and the 

characteristics of the Fog computing platform. 

 They use fog-to-things computing for testing purposes.   Their study aims to minimize latency and energy 

usage by using fog topologies for anomaly detection.   Ting et al. [23] used entity embedding and pairwise 

interaction to identify anomalies in complicated categorical data and developed a probabilistic model for anomaly 

detection to reveal outliers that deviate from the overall data distribution model.   Anomaly detection is often used in 

time series data to find outliers or irregularities related to prior data points [24]–[25]-[26]. 

There are a number of techniques that can be applied to quantitative or real-world datasets. Additionally, it 

is easy to define anomalies in quantitative data. When minority samples in a dataset deviate from the suggested 

pattern of the bulk of samples, anomalies are identified. 

 As such, the process of creating irregularities in measurable data, both with and deprived of abnormalities, 

is quite straightforward. Despite being widely used in a variety of disciplines, including politics, sociology, biology, 

education, and so on, categorical data is given less consideration in IoT ecosystems.  In other technological fields, 

such as network breaches, anomalies have been found using categorical datasets. [27], Social Networks [29], [30], 

Health and Medicine [28], Credit Fraud, Legislation [31], etc.   In this study, we analyze continuous categorical 

datasets of IoT traffic traces within a smart house, emphasizing numerous anomalies and hazards in a monitored 

environment. 

 3.  EVALUATION MODELS 

We classify the attack and abnormalities found in the gathered category data using the following machine 

learning models.  

3.1. k-Nearest Neighbour 

In the k-Nearest Neighbour (KNN) classification new examples are placed together with the most related 

cases. In this supervised machine learning approach, a set of true classifications serves as the basis for a prediction. 

The algorithm determines how far apart the two locations are. The nearest neighbors are found based on pairwise 

distances. 

  The class label prediction using the closest neighbor list is then decided by a majority vote.  The distance 

metric for kNN that we have used in this study is Euclidean distance, which is provided by: 

      Euclidean Distance = 
                                                                                                                            

( 1)
 

   Where, 

(a1,b1) = first point and (a2,b2) =second point 

3.2. Linear Discriminant Analysis 

A linear decision boundary is established in Linear Discriminant Analysis (LDA) by fitting class-

conditional densities to the data.    It implements the Gaussian distribution and Bayes' theorem for each category.    

LDA is a dependable classifier that can also be employed to reduce dimensionality.    LDA effectively ascertains 

whether the logarithm of the likelihood ratio is below or above a specified threshold in the presence of only two 

classes.    When only two classes are present, the dot product is defined as follows: 

     →−w.→−x > c                                                                                                                                        (2)               

       where, 

   
and 

x = set of observations (features, attributes, variables, measurements) 

 

It is usual practice to use the "one-against-the-rest" method in multi-class categorization.  In this method, 

there are κ _ binary classifiers for each κ _ class.  Another prevalent method is the "pairwise" technique, which 
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employs κ (κ _ - 1)/2 classifiers for each pair of classes.   In both scenarios, the final classification is generated as an 

output by combining all of the classifiers in some capacity. 

3.3. Decision Tree 

One type of supervised learning classifier is a decision tree. Using Attribute Selection Measures (ASM), the 

algorithm divides the data and selects the best attribute. The dataset is separated into smaller subsets, and the chosen 

property serves as a decision node. This process is repeated for every kid until specific conditions are met, resulting 

in a recursive decision tree. 

3.4. Random Forest 

Many decision trees are incorporated into random forests to minimize overfitting. k features are chosen at 

random from a training set that has m features in total, where k<<m. The procedure is carried out n times to create n 

decision trees. The test object's final class is determined by adding up the votes from n decision trees. 

3.5. Logistic Regression 

Logistic Regression is the most widely used predictive linear machine learning model.    The algorithm 

illustrates the correlation between a dependent binary variable and one or more independent variables.    By 

optimizing the parameters m and d, the logistic sigmoid function in (3) produces a value between 0 and 1: 

                                                                                                                                (3)                 

where, 

F(y) = output between 0 and 1  

y = input m, d = slope and intercept 

3.6. Support Vector Machine 

Support Vector Machines (SVMs) are supervised machine learning methods that are both reliable and 

versatile, and they are used for regression and classification.   Frequently formed hyperplanes are the most effective 

method for distinguishing between the classes.   The hyperplane that is selected based on its ability to suit the classes 

is known as the maximum marginal hyperplane (MMH).   The SVM algorithm is executed by a kernel that converts 

a low-dimensional input space into a higher-dimensional space. The Radial Basis Function (RBF) serves primarily 

as our kernel for Support Vector Machine (SVM) classifications.   Equation (4) provides a mathematical 

representation, whereby gamma is established at 0.1 throughout the learning process and varies between 0 and 1. 

    K(g,gi) = exp(−gamma ∗  sum(g − gi2)                                                                                               (4)       

  

where ,  

3.7. ANN - MLP classifier 

 

An Artificial Neural Network (ANN) that uses feed-forward technology is the Multi-Layer Perceptron 

(MLP) classifier.  It is an algorithm for supervised learning.  The network's output comprises one or more output 

nodes, many hidden units including nonlinear activations, and numerous input nodes that denote the characteristics.   

The information from the input nodes is analyzed by the units in each hidden layer, which are governed by a set of 

associated weights.    In light of the following phrases: 

x1,...xn = input variables, converging to the unit k wk1,...wkn = weights connecting unit k 

υk = net input 

yk = output of the unit where υk0 is a bias term and φ(.) = the activation function 

y(i) = predicted value b 

The output node from each hidden layer is calculated as [32]: 

 υk = Σnj=1ωkjxj                                                                                                                                     (5) 

and 

 yk = φ(υk +(υk0))                                                                                                                        (6) 

where  , 

     for sigmoid activation function 
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In feed-forward neural networks, the sigmoid node serves as the fundamental unit. Ultimately, the ANN's 

output receives the updated information. (7) computes the loss function based on the true and anticipated values. The 

multi-layer perceptron is frequently trained using the simple Backpropagation approach [33]. Gradient descent is 

employed to determine the weights of the neural network, with the objective of minimizing the error resulting from 

the loss function.   The loss function is defined as follows: 

     L(y(i),y(i)) = −(y(i)log(y(i))+(1−y(i)log(1−y(i))) b b                                                                            (7)        

 

 4. IV. EVALUATION METRICS 

4.1. Precision 

Accurate positive identifications or values are represented by precision. The ratio of accurate positive 

forecasts to all positive predictions determines the quantity of information that a value conveys.  In other words, it is 

the proportion of positive examples that are genuinely positive.  While FN is less of a concern during evaluation, 

precision is considered more important.  The precision calculation is as follows: 

 Precision                                                                                                                               (8) 

 

4.2. Recall 

The percentage of accurately labeled positive examples is called recall. The model's insight is provided by 

calculating the number of right predictions. Mors tatter et al. in [34] present an intriguing method to improve the 

recall in bot detection. Remembering is based on: 

 Recall                                                                                                                                  (9) 

  

 4.3. F1-score

The F1-score computes the vocal mean by taking into account both Precision and Recall values. It is 

extensively employed in the information retrieval sector for credit scoring, document classification, and search 

measurement [35] [36]. It is between 0 and 1, where 1 is the classifier that exploits recall and exactness. The F1-

score is computed as follows: 

                                                                                                                  (10)  

 

4.4. Accuracy 

The accuracy of a model is determined by computing the percentage of the time that the model's output 

matches the unique output in the test data, or the right findings that the classifier has produced. Accuracy is 

determined by: 

 Accuracy                                                                                                     (11) 

 5.  PROPOSED APPROACH 

5.1. Data Analysis 

 
The suggested anomaly detection architecture for an IoT traffic trace database is shown in Figure 1.   

Before being input into any mechanism knowledge classifier, raw sensor data is examined and modified.   Alongside 

arithmetical and insignificant data, the timestamp attribute is included in the mainSimulationAccessTraces data 

collection, which constitutes a categorical data set.   The "Value" and "Accessed Node Type" attributes, which 

include incessant and categorical numerical values, respectively, are deficient in data.   In the "Node Type 

Accessed," it was determined that 148 rows with "NaN" values were anomalous, along with their corresponding 
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labels.   Thus, the "Malicious" value was used to substitute the absent "NaN" entries in the "Accessed Node Type" to 

protect the essential data.   Correspondingly, non-continuous values such as "False," "Twenty," "True," and "none" 

were substituted with "0," "20," "1," and "0," correspondingly, under the "Value" attribute. 

 
Figure 1 depicts our suggested anomaly detection framework 

 

5.2. Data Processing 

Multiple Correspondence Analysis (MCA) is used in this model to extract categorical characteristics from 

the categorical dataset.  MCA is often referred to as Main Constituent Analysis (PCA) for definite data.   PCA is a 

dimensionality discount method that maps data after a high-dimensional space to a lower-dimensional subspace to 

discern significant characteristics within a heterogeneous dataset. MCA yields the variance and factor scores that 

most accurately reflect categorical data. 

I have performed Automated Correspondence Analysis (MCA) on the taxonomic data, displayed the results 

in a graph, selected the taxonomic columns from the cleaner data frame, created an MCA model with two entities, 

built a model on the taxonomic data, transformed it to obtain the MCA data components, and plotted the first MCA 

component in a graph Figure 2. 

 
Figure 2 Multiple Correspondence Analysis (MCA). 

 

 

We originate that the "timestamp" variable in the mainSimulationAccessTraces dataset has a nominal 

correlation with the dataset's forecast normalcy.   Thus, 12 features are selected from the dataset's 85 characteristics.   

Once features have been identified, the categorical data must be transformed into vector form. The feature 

segmentation approach is currently used [37].  Because the label encoding approach uses less disk space, we choose 

to utilize it. One-hot encoding faces the "curse of dimensionality" as the amount of features upsurges dramatically.

  

5.3. Feature Scaling 

After encoding the taxonomic column labels, we separated the dataset into exercise and test data.  To scale 

the characteristics, we utilize the standard scaling approach, which is the most used scaling algorithm.  When the 

characteristics are changed via this procedure, the distribution has a mean of 0 and a variance of 1.  To avoid the 

exercise and test data being scaled about a mean value, it is essential to partition the data before the feature scaling 

phase.  The performance of the models is significantly improved by standardization.  All characteristics are assumed 

to have a variance of the same order and to be centered around 0 in models such as the RBF kernel in SVMs.  This 

might take over the role and contribute to the complexity of learning.  The traditional method centers the data by 

means of the following formulation: 
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                                                                                                                    (12) 

 

where, 

S = standard deviation 

M = mean 

5.4. Training Process 

Section III delineates the machine learning techniques used to train the training data.  The labels of an 

output indicate its affiliation with the anticipated class.  A training dataset comprises this.   Subsequently, a learning 

model is adeptly trained to align with the example data and discern the accurate place inside the fresh dataset. It is 

not always the case that a certain learning model produces the greatest results or the fewest mistakes.  Because of 

this, we explore an ensemble learning approach in our technique, where the example's correct location is determined 

by applying a number of assumptions that are built on the training data.  Several models' judgments are integrated in 

this stage, which boosts the model's overall effectiveness and results in more precise output.  It also creates a model 

that is more stable and strong than individual models. 

We employed AdaBoost as an ensemble learning boosting technique in our methodology. by constructing a 

pipeline from section III of successive models. To create a resilient ensemble model, weight is given to the data for 

faulty predictions, which are then followed by correct predictions by the next model. The classification of the 

dataset's anomalies is then predicted by the finished model. 

 6.  EVALUATION 

6.1. Experiment Setup 

We evaluated the mainSimulationAccessTraces [38] dataset from the Distributed Smart Space 

Orchestration System, which is publically accessible.  Twenty-one sites are included in the dataset, each of which is 

equipped with twenty-one movement sensors, twenty temperature control sensors, six battery sensors, five door lock 

sensors, four heating control sensors, three washing machine sensors, three visitor service sensors, and twenty 

illumination control sensors.    In figure 3a, denial of service (DoS) assaults account for 58% of all anomalous data, 

rendering them the most prevalent type of aberrant data. 

 

 

Figure 3a: distribution of anomalous data 

 

 

0.43%, 0.25%, 0.22%, 0.15%, 0.10%, and 0.03%, respectively, are the other irregular data, which include 

scan, hateful control, malicious operation, espionage, data searching, and incorrect setup.  Figure 3b shows the 

frequency of each of the eight groups, which include the normal data and the data that is abnormal for more than 

seven. 
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Figure 3b : The frequency of all the 8 classes which includes above 7 anomalous data and normal data is illustrated 

 

 To enhance our understanding of the data, we analyzed a histogram delivery.   It contains anomalous data 

for each frequency of the sensor type.   Figures 4a and 4b illustrate the categories of irregular data in the Light 

Switch (LC) and Crusade Switch (MC) Sensors.  

 

Figure 4a,4b: anomalous data in light control sensors and anomalous data in movement control sensors 

We can see that from total of Number of sensors that showed abnormal data. 

 6.2. Results and Discussion

The assessment metrics of several machine learning techniques used to the mainSimulationAccessTraces 

categorical dataset are shown in Table I.  These techniques are compared to the Random Forest model that is 

recommended in this table.  This RF is the finest, in my opinion, even if machine learning techniques like KNN, 

ANN, and DT outperform other evaluation models like LDA, LR, SVM, ANN, and Adaboost Learning, according 

to the table.TABLE I : Evaluation findings from a number of machine learning algorithms on 

mainSimulationAccessTraces datasets  

 
Table 1: Evaluation findings from a number of machine learning algorithms on mainSimulationAccessTraces datasets  

Model Accuracy Precision Recall F1 Average 

KNN 0.99 0.99 1.00 0.99 0.99 

LDA 0.97 0.729190 0.43 0.54 0.67 

DT 0.99 0.99 1.00 0.99 0.99 

RF 1.00 1.00 1.00 1.00 1.00 

LR 0.98 0.91 0.40 0.56 0.71 

SVM 0.97 0.95 0.20 0.33 0.61 

ANN 0.99 0.98 1.00 0.98 0.99 

AdaBoost 0.99 0.96 0.74 0.83 0.88 
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Figure 5 :  Comparative Results 

 

When learning on categorical data, the accuracy, precision, recall, and F1 are all 0.99.  

Figure 2 illustrates our strategy in comparison to others.    Pahl et al. employed their own synthetic dataset 

in [39].    In multi-class classification, the accuracy was attained at 96.3% using K-means and BIRCH clustering.    

By employing a neural network approach for multi-class classification on the NSL-KDD dataset, Diro et al. 

achieved an accuracy of 98.27% in [40].    D'Angelo et al. employed the U-BRAIN model for binary classification 

on NSL-KDD and actual traffic data, achieving accuracies of 97.4% and 94.1%, respectively. Unlike other studies, 

ours offers a comprehensive and intelligible explanation.  a thorough description of the procedures involved in our 

recommended approach, as well as the assessment models and criteria utilized to test the suggested technique. 

 6.3. Challenges

Finding anomalies in categorical data presents a number of difficulties. There is contention in the literature 

over the definition of an outlier.  Only a limited number of datasets pertaining to the IoT-sensor category are now 

available.  Making synthetic definite data and including anomalies is more challenging than producing quantitative 

data.   [42].   Identifying anomalies in the nominal dataset is more difficult due to its absence of a natural order.    

The quantity of features or observations and categorical variables inside categorical data, together with the number 

of categories each contains, complicates the identification of patterns in a categorical dataset. Therefore, when 

anomaly detection algorithms are used, they are increasing the computing complexity of the category dataset. 

 7.  CONCLUSION  

In this paper, To ensure that answer our first research query from Section I, we use conventional 

mechanism learning techniques like KNN, LDA, DT, SVM, and so on. In order to solve the second research 

problem, we use traditional machine learning models to detect anomalies and attacks by using an ensemble learning 

technique to a mainSimulationAccessTraces categorical IoT dataset.  Our approach processes data using feature 

extraction and label encoding methods.  The training procedure then employs the Random Forest model.  Lastly, the 

results are evaluated using several evaluation criteria by comparing the test and training data.  According to the data 

shown in Figure 2, our method is superior to the current one.  A variety of analysis-relevant assessment models and 

metrics are also described in this work.  In an IoT system, identifying anomalies is essential for preventing sudden 

disruptions like sensor failures, identifying attacker incursions, identifying unidentified security concerns, and 

monitoring odd user behavior.  This study compares the efficacy of an collaborative machine learning model with 

traditional learning methods for anomaly identification in a keen home environment inside the Internet of Things 

framework. 

 We want to use a similar methodology on a much bigger IoT category dataset in our next effort.  We also 

want to test a number of other ensemble learning strategies.  Lastly, we want to test the approach in an actual IoT 

system to identify abnormalities and assaults 
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