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 The rapid growth of IoT introduces significant security challenges, 

necessitating effective anomaly detection techniques. This paper implements 

a Random Forest Classifier for detecting and classifying anomalies in IoT 

network traffic using the RT_IOT2022 dataset. The model achieves 99.8% 

accuracy with high precision, recall, and F1-scores across multiple attack 

types (e.g., MQTT_Publish, DDoS). Detailed evaluation confirms the 

classifier's effectiveness in distinguishing diverse attacks, demonstrating the 

viability of machine learning for enhancing IoT security. This work 

contributes to developing resilient IoT systems, though future research 

should address class imbalance and comparative performance with other 

models. 
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1. INTRODUCTION  

The IoT has seen an unprecedented boom in growth, hence allowing various innovative applications across 

industries that are changing the way interactions with the digital world happen. IoT devices are becoming 

ubiquitous, from smart home appliances to industrial sensors, ensuring increased connectivity, automation, and data-

driven decision making. [1, 2] 

But whereas the proliferation of IoT devices opened new avenues in diversified fields, it has also 

introduced new security challenges: these devices are relatively resource-constrained with respect to computation; 

they mostly run outdated software; and often operate using inefficiently designed communication protocols. By 

exploiting such weaknesses, cybercriminals have launched all kinds of attacks-technical and less technical-starting 

from DDoS and botnet infection up to unauthorized access of sensitive data [3] 

Effective anomaly detection in IoT networks plays a vital role in mitigating the impact of these security 

threats and ensuring reliability and trustworthiness in IoT systems. Most of the traditional signature-based detection 

methods have a very limited potential to find novel and evolving attack patterns, which motivated researchers to 

look for more advanced techniques such as machine learning and deep learning. These data-driven approaches 

demonstrated their capability in effectively detecting and classifying various types of anomalies in IoT networks.[4, 

5] 

Among various ML algorithms, the Random Forest Classifier has gained this interest in research studies 

due to its capabilities in handling complex and heterogeneous IoT network data. A Random Forest Classifier will 

combine the multiple decision trees in order to enhance both the accuracy and robustness of the model, making it 

quite suitable for anomaly detection in IoT environments.[5, 6] 

In this paper, and following our previous work [7-10], we adopt the Random Forest Classifier to address 

the anomaly detection challenge in IoT networks. Our focus, then, was on investigating how a Random Forest 

Classifier would be able to detect or classify the different types of various attacks such as MQTT_Publish, DDoS, 
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and Port_Scan using the comprehensive dataset RT_IOT2022. Then, we will then conduct a thorough evaluation of 

our model's performance concerning various metrics - accuracy, precision, recall, F1-score, and confusion matrix, 

which also may provide interesting insight into machine learning techniques in bettering IoT network security. [11] 

 

2. Related Work  

The progression of anomaly detection in IoT networks represents a shift in methods, moving from 

statistical approaches to advanced machine learning and deep learning. Importantly, Meenal et al. [12] provided 

important preliminary research on Random Forests. They described the theoretical foundations, and demonstrated 

the potential for bootstrapping aggregation and random feature selection to help avoid overfitting, which again is 

beneficial for using Random Forests against a never-ending variety of heterogeneous IoT traffic that tends to have 

features with a non-stationary distribution. Since their development of the ensemble principles, those concepts have 

been used in many aspects of IoT security research, though, in a resource-limited environment this can be a difficult 

feat that requires attention to efficiency. By putting together these early pieces of work, Ahmed and Alsmadi, [13] 

did comparative analytical research and benchmarked the performance of 12 classifiers on 6 IoT datasets at scale, 

and provided critical information about performance and efficiency.. Their analysis demonstrated Random Forest's 

consistent superiority in detection accuracy (mean F1-score: 0.972 ± 0.018) compared to SVM (0.892 ± 0.031) and 

k-NN (0.903 ± 0.027) alternatives, though they documented significant degradation under class imbalance 

exceeding 10:1 ratios. This vulnerability was later quantified by Gavel et al. [14], who correlated feature skewness 

with misclassification rates in minority attack classes, establishing mathematical proof that feature importance 

rankings become unstable when minority-class samples constitute less than 3% of the training distribution. 

Within industrial IoT contexts, Bulla and Birje's comprehensive survey [15] cataloged deep learning 

advances while exposing three persistent limitations: the computational intractability of RNNs on edge devices, 

autoencoders' vulnerability to adversarial poisoning, and the "black box" interpretability crisis in multi-layer 

architectures. Their observation that deep models require 3.2× more GPU resources than tree-based alternatives 

resonate with recent findings by Albaseer et al. [16], who measured 300-400ms inference latency for LSTM-based 

detectors on Raspberry Pi clusters—a critical barrier for real-time industrial control systems. 

Against this backdrop, Pramilarani et al. [2] validated Random Forest's efficacy for binary intrusion 

detection, achieving 98.7% accuracy on a balanced IoT dataset. While their work confirmed ensemble methods' 

suitability for gateway-level deployment, it omitted evaluation under realistic class distributions—an oversight later 

addressed by De Keersmaeker et al. [17], whose meta-analysis of 27 IoT security datasets revealed pervasive 

imbalance (median majority/minority ratio: 47:1) and criticized the field's overreliance on synthetically generated 

attacks. These dataset limitations directly impact the ecological validity of published results, a concern particularly 

relevant to our RT_IOT2022 evaluation framework. 

The emergence of decentralized learning paradigms has reshaped scalability research. Nguyen et al.'s DÏoT 

framework [18] represented a watershed moment by reducing cross-device communication overhead by 63% 

through federated averaging—a breakthrough subsequently refined by Albaseer et al. [16] through asynchronous 

aggregation protocols that tolerate 40% node heterogeneity. However, these advances remain constrained by the 

statistical heterogeneity problem, wherein non-IID data distributions across devices degrade global model accuracy 

by 11-18% according to cross-validation studies. 

Complementary research threads have explored game-theoretic formulations, with Sanjab et al. 1614] 

modeling smart grid security as a Stackelberg game to derive optimal defense resource allocations. Their elegant 

Nash equilibrium solutions provide theoretical insights but simplify threat actors into monolithic entities—an 

assumption contradicted by Yousuf and Mir's [19] observations of coordinated multi-vector IoT attacks. The latter 

researchers' graph-embedded RNN achieved 96.4% DDoS detection accuracy but required 800MB memory 

overhead, exceeding the capacity of 78% of commercial IoT devices according to Almalawi et al.'s [5] resource 

audit. 

Three unresolved challenges dominate the current research landscape: 

 The efficiency-accuracy tradeoff: Deep learning models sacrifice deployability for marginal 

accuracy gains 

 Data representation gaps: Public datasets inadequately model zero-day attacks and hardware-level 

exploits 

 Evaluation myopia: Standard metrics ignore operational constraints like energy consumption and 

inference latency 

This study confronts these gaps through strict computational profiling and minority-class focused 

evaluation, positioning RT_IOT2022's attack taxonomy as a corrective to dataset limitations documented by De 



Dijlah Journal of Engineering Science (DJES)                                            Vol. 2, No. 3, Aug., 2025, pp. 127-136 

ISSN:  Printed: 3078-9656, Online: 3078-9664, paper ID: 59 

 

129 

 

Keersmaeker et al. [17]. Our methodological emphasis on hyperparameter transparency and stratified validation 

directly addresses reproducibility concerns raised in Ahmed and Alsmadi,'s [13] benchmarking manifesto. 

 
3. Methodology 

This research employs a conventional Random Forest Classifier to evaluate baseline anomaly detection 

performance in IoT networks. The methodology adheres strictly to standard implementation practices without 

algorithmic modifications, positioning this work as a comparative benchmark rather than a novel contribution. The 

experimental framework encompasses three integrated components: dataset curation, preprocessing, and model 

validation, executed through the following workflow. 

 

 

Figure 1. illustrates the workflow 

 
3.1. Dataset Characteristics and Selection Rationale 

The RT_IOT2022 dataset serves as the experimental foundation, comprising 123,118 network traffic 

instances with 65 discriminative features. This dataset was selected due to its realistic emulation of IoT ecosystems, 

capturing heterogeneous traffic patterns across 12 attack categories. Feature engineering incorporates both numerical 

attributes (e.g., packet counts, header sizes, inter-arrival times) and categorical variables (e.g., protocol types, 

service flags), with the latter transformed via label encoding to ensure numerical compatibility with machine 

learning algorithms. The target variable Attack_type represents a critical security taxonomy, encompassing 

reconnaissance attacks (e.g., NMAP scans), volumetric threats (e.g., DDoS variants), and application-layer exploits 

(e.g., MQTT manipulation). Dataset partitioning follows an 80:20 stratified split to maintain proportional attack 

class representation across training and validation subsets. 

The RT_IOT2022 dataset (Table 1) provides 123,118 instances of IoT network traffic with 65 features 

spanning: 

 Temporal metrics: Packet inter-arrival times (Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖) 

 Protocol attributes: TCP flag distributions (𝐹 = ∑ 𝕀flag𝑖

6
𝑖=1 ) 

 Payload characteristics: Byte entropy (𝐻(𝑋) = −∑𝑝(𝑥𝑖)log2𝑝(𝑥𝑖)) 

 

Table 1: Dataset Characteristics 

Property Specification 

Total Instances 123,118 

Features 65 

Numerical/Categorical 60 / 5 

Attack Classes 12 

Train-Test Split 80:20 (Stratified) 

 

The dataset's inclusion of application-layer attacks (e.g., MQTT exploitation) and reconnaissance scans 

(e.g., NMAP variants) enables comprehensive threat coverage. Stratified partitioning preserves class imbalance 

ratios across subsets, maintaining ecological validity. 

 
3.2. Preprocessing Pipeline 

A rigorous preprocessing sequence was applied to ensure data integrity prior to model training. Initial 

sanitization involved discarding non-informative identifiers such as the ID column, which lacks discriminative 

power for classification tasks. Subsequent transformation of categorical features (proto and service) utilized label 

encoding to generate numerical representations compatible with scikit-learn's algorithmic implementations. 

Comprehensive analysis revealed negligible missing values, obviating the need for imputation techniques—a 

decision validated through statistical examination of feature completeness. The preprocessed dataset was then 

decomposed into feature matrix X and target vector y, with the latter corresponding to the Attack_type labels. Final 

data partitioning employed a stratified sampling approach to preserve attack class distributions during the 80:20 

train-test split, mitigating potential evaluation bias. 
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Categorical features (proto, service) undergo injective mapping to ℤ+: 

𝜙: \𝑚𝑎𝑡ℎ𝑐𝑎𝑙{𝐶} → {1, 2, … , 𝑘}7,\𝑞𝑢𝑎𝑑 𝜙(𝑐𝑖) =  𝑖 \𝑡𝑎𝑔{1} 
 

where 𝒞 is the categorical domain. The feature-target decomposition yields: 

\𝑚𝑎𝑡ℎ𝑏𝑓{𝑋} =  [𝑓{𝑥}{(1)}‖𝑓{𝑥}{(2)}‖ ⋯ 𝑓{𝑥}{(65)}]
𝑇

∈ {𝑅}{123118 ×65}, 𝑓{𝑦} ∈ {0,1}{12} {2} 

 

3.3. Experimental Framework and Model Configuration 

The experimental workflow initiated with exploratory data analysis to characterize feature distributions, 

statistical properties, and inter-variable correlations, employing histogram visualization and descriptive statistics. 

Model instantiation utilized scikit-learn's RandomForestClassifier implementation with default hyperparameters 

(Table 3), explicitly avoiding structural modifications to establish baseline performance metrics. Training leveraged 

100 decision trees (n_estimators=100) with Gini impurity criterion (criterion='gini') for node splitting, while 

permitting unrestricted tree growth (max_depth=None) to capture complex feature interactions. Bootstrap 

aggregation (bootstrap=True) enhanced ensemble robustness against overfitting. 

The Random Forest classifier implements Meenal et al.'s ensemble framework: 

{𝑦}̂ = ( { 𝑇
𝑏(𝑓{𝑥})}{𝑏=1}

{100} ) {4} 

Individual trees 𝑇𝑏  perform recursive partitioning using Gini impurity minimization: 

{𝐼}𝐺(𝑡) =  1 − ∑ 𝑝𝑘
2(𝑡)

{12}

{𝑘=1}

 {5} 

where 𝑝𝑘(𝑡) is the proportion of class 𝑘 at node 𝑡. Hyperparameters follow theoretical and empirical guidelines 

(Table 2): 

 
Table 2: Hyperparameter Configuration 

Parameter Value Theoretical Justification 

𝑛estimators 100 Beyond 𝐵 > 100, 𝜎𝑦̂ decreases <1% (Eq. 6) 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 Gini Lower comp[utational complexity vs. entropy 

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ None 𝒪(log𝑛) depth for 𝑛 samples 

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 2 Minimal statistically valid partition 

𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 True 
𝔼[Error] = 𝜌𝜎2 +

1 − 𝜌

𝐵
𝜎2 

where 𝜌 is tree correlation and 𝜎2 individual tree variance. The 𝑛estimators = 100 satisfies: 

𝑙𝑖𝑚{𝐵 →∞}{𝑉𝑎𝑟}({𝑦}̂) =  𝜌𝜎2 {6} 

with 𝜌𝜎2 < 0.01 empirically observed for 𝐵 ≥ 100. 

 

3.4. Evaluation M[[ethodology 

Performance validation incorporated multi-faceted assessment protocols: 

 Quantitative Metrics: Accuracy, precision, recall, and F1-scores were computed per attack class to 

evaluate discriminatory capability. 

 Visual Analytics: Confusion matrices provided granular insights into misclassification patterns 

across attack categories, while ROC curves characterized true-positive/false-positive tradeoffs at 

varying classification thresholds. 

 Statistical Validation: Macro-averaged metrics aggregated per-class performance, with 

supplementary analysis of minority-class detection efficacy to address dataset imbalance. 

This methodological approach prioritizes reproducibility and benchmarking rigor, with all  

Performance evaluation employs: 

 Multiclass Metrics: 
{𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛}𝑘 =  {𝑇𝑃𝑘}{𝑇𝑃𝑘 +  𝐹𝑃𝑘}, {𝑅𝑒𝑐𝑎𝑙𝑙}𝑘 = {𝑇𝑃𝑘}{𝑇𝑃𝑘 +  𝐹𝑁𝑘} {7} 
{𝐹1}𝑘 =  2 {{𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛}𝑘 ⋅ {𝑅𝑒𝑐𝑎𝑙𝑙}𝑘}{{𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛}𝑘 + {𝑅𝑒𝑐𝑎𝑙𝑙}𝑘} {8} 

 Macro-Averaging: 
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{𝑀𝑎𝑐𝑟𝑜 𝐹1} = {1}{12} ∑ 𝐹1

{𝑘=1}
𝑘
{12}

{9} 

 ROC Analysis: 

{𝐴𝑈𝐶}𝑘 =  ∫ 𝑇𝑃𝑅𝑘(𝐹𝑃𝑅𝑘)𝑑𝐹𝑃𝑅𝑘

1

0

{10} 

 

Table 3: Validation Matrix 

Technique Purpose Implementation 

Stratified k-fold (k=5) Bias reduction in imbalanced data StratifiedKFold (scikit-learn) 

Wilcoxon signed-rank Statistical significance testing α=0.05, 𝐻0: AUC ≤ 0.9 

SHAP value analysis Feature importance quantification shap.TreeExplainer() 

 
This tripartite validation strategy ensures robustness against class imbalance while providing statistical 

guarantees of detection efficacy. SHAP analysis identifies high-impact features like packet_jitter and flag_ratio. 

implementations executed in Python 3.10 using scikit-learn 1.2.2. The explicit exclusion of algorithmic 

innovations focuses the contribution on empirical validation of standard Random Forest efficacy within IoT security 

contexts. 

 
Table 4: Random Forest Hyperparameter Configuration 

Hyperparameter Value Computational Rationale 

n_estimators 100 Balance between variance reduction and computational efficiency 

criterion Gini Standard impurity measure for classification tasks 

max_depth None Unrestricted growth to model complex feature interactions 

min_samples_split 2 Minimal samples required for node splitting 

bootstrap True Ensemble robustness via bagging 

random_state 42 Reproducibility assurance 

 

4. Results and Discussions 

This thorough investigation demonstrates the Random Forest classifiers ability to robustly uncover 

anomalies, as well as its important limits regarding class imbalance and relative model performance. The following 

sections will show a layered examination of experiment results contextualized in regards to IoT Security research 

paradigms.  

In terms of experimental performance, the classifier exhibited excellent overall performance metrics across 

the RT_IOT2022 dataset. As illustrated in Figure 2, there is substantial skew in the attacks distributions, where 

MQTT_Publish represents 72.4% of instances and rare attacks such as Web_Attack_RFI (0.004%) and 

Web_Attack_XSS (0.002%) make little to no representation, significantly inhibiting the classifiers detection 

performance. Recall differences were between 15 - 22%, when comparing dominant to minority classes.. 
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Figure 2. Distribution of Attack Types 

 
The Pareto distribution of attack frequencies demonstrates a significant limitation for the dataset; because 

high-volume attacks (e.g., MQTT_Publish) have a lot of training examples, low-volume attacks (e.g. attack type not 

listed) do not, creating an involuntary bias in multiclass classification. Aware of the imbalanced records, security 

practitioners must realize that while models are classified as statistically common or uncommon, the operational 

context may be biased as threats would happen and be marked as outliers. 

Comparing Model Performance 

To provide context on the results, Table 5 compares the Random Forest algorithm selected to a variety of 

statistical models typical in the literature using the same preprocessing and evaluation. The comparison includes 

Support Vector Machines (SVM) and Convolutional Neural Networks (CNN) to allow for premise awareness of the 

algorithms that could be most suited to applied IoT security situations. 

Table 5: Comparative Model Performance Analysis 

Model Accuracy Macro F1-Score Inference Latency (ms) 

Random Forest 99.8% 0.98 8.2 ± 0.3 

SVM (RBF Kernel) 92.3%* 0.89* 14.7 ± 1.1 

CNN (1D Architecture) 96.7%* 0.92* 22.9 ± 2.4 

 

*p<0.01 vs. Random Forest (paired t-test) 

This comparison has highlighted fundamental tradeoffs in IoT intrusion detection systems. The ensemble 

architecture of Random Forest, for instance, exhibited the highest discriminative ability in high-dimensional network 

features in this paper, and statistically significant improvements (p < .01) were made over both the SVM and CNN 

methods. Nonetheless, it was the computational efficiency (8.2ms inference) of Random Forest that most notably 

provides advantages for resource-constrained IoT environments looking to mitigate threats in real-time. The CNN 

showed promise at extracting temporal features, but as noted, the issue of data scarcity for the infrequent attack 

classes is significant. 

This overall understanding demonstrates that analysis of tradeoff's in IoT intrusion detection systems will 

be necessary for their continued maturation. 

Granular Performance Examination 
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Figure 3. Confusion Matrix of Proposed Random Forest Model 

 

The confusion matrix exposes strong characteristics of classification behavior. The diagonal predominance 

indicates strong classification abilities overall, selecting 18,897 attacks towards the MQTT_Publish (18,900 total 

attacks). The off-diagonal elements have exposed some vulnerabilities of the model, however.  Web_Attack_RFI 

was mistaken to be the Thing_Speak category in 60% of its instances (3/5), while the Web_Attack_XSS was itself 

confused with NMAP_UDP_SCAN with one of the two samples (1/2). To a certain degree, however, these all 

misclassifications were attributed to their feature space being dominated by the repetitive and non-diferentiated 

attack signatures in their class, which were unceremoniously split by the recursive partitioning algorithm in 

hyperplane partitions, illustrating to subtlety and volatility of this learning algorithm towards determining class 

distribution in a potentially imbalanced dataset.. 

 

Figure 4. Classification Report of Proposed Random Forest Model 

 
Precision-recall analysis reveals significant differences in performance. While dominant attacks appear 

nearly perfect (MQTT_Publish: 1.00 precision/recall) and minority classes shows remarkable degradation 

(Web_Attack_RFI: precision 0.85, recall 0.81), the 18 F1-score difference between frequent (0.99) and rare (0.82) 

attacks shows performance limitations of automatically learning discriminative features with very few training 
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examples. This split has important ramifications for security operation, where not detecting unknown new threats 

can regularly cause unacceptable amounts of damage.  

The receiver operating characteristics plots allow for a better understanding of classification confidence. 

All attack classes were able to achieve impressive AUC values (0.91 - 0.96), given that their AUC values were 

above the cut-off of 0.90 in the clinical significance range. However, minority classes continually increased false-

positive rates at low thresholds, and Class 11 showed the steepest rate of at 0.91 AUC.. 

 

Figure 5. ROC Curve of Proposed Random Forest Model 

. 

Research Implications and Limitations 

The analysis provided three key things: 

 

First, there's a class imbalance issue. The strong negative correlation between how often attacks happen and 

how well they're spotted (r = -0.87, p&lt;0.001) shows a main limit of normal machine learning methods. Big, 

resource-heavy attacks, like DDoS, get more weight when building decision trees. This means smaller, harder-to-

find attacks might slip through the cracks, creating weaknesses in security. 

 

Second, representing network features is tough. Some features are helpful for spotting certain attacks, but 

not others. For example, looking at packet headers is enough to see protocol-based attacks like NMAP scans. 

Though, to find application-layer attacks like Web_Attack_RFI, a look into the payload is needed. Current ways of 

creating features don't always allow for this. 

 

Third, it's hard to put into action. Even if the accuracy looks good on paper, using it in the real world has 

problems: 

* Models can get old fast as new attacks appear. 

* The time it takes to figure things out (8.2ms) is too slow for 5G networks. 

* It uses too many resources to run on edge devices. 

 

Future studies should go in these directions: 

* Use synthetic minority oversampling by using GANs to make fake examples of rare attacks that seem 

real. 

* Create hierarchical learning systems with hybrid structures 

* Use dynamic cost-sensitive algorithms by adding real-time attack danger levels into classification loss 

functions 

 

This assessment says that Random Forest is a good starting point for spotting weird stuff in IoT devices. It 

also lays out clear ways to fix its problems in real-world security situations. The numbers show how well it does, 

which can be used to compare against other studies in the future.. 
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5. Conclusions 

Random Forest classifiers work well to strengthen IoT security. They do this with good scores, like 99.8% 

accuracy and a 0.98 F1-score across attacks. The model is good at finding common threats like MQTT_Publish 

attacks, showing balanced precision and recall in testing. These results show that these types of methods can be 

helpful for finding unusual network activity and set a standard for IoT security. But, there are some limits to 

consider. 

 

A close look reveals problems because the RT_IOT2022 dataset is uneven. MQTT_Publish is 72.4% of the 

data, which makes it harder to find less common attacks; for example, Web_Attack_RFI detection had an F1-score 

difference of 18 points. Also, the tests were only done in the lab, so we don't know how well it would work in real-

time situations where speed is important. Static Random Forests cannot adapt to new attack styles without being 

retrained. 

 

Following work can focus on federated learning designs for private, spread-out model training across 

different IoT systems. That may fix size issues and equipment placement issues. Generative adversarial creation of 

minority-class examples may improve the class imbalance problem. Another way is to add temporal feature 

extraction using convolutional submodules with ensemble classification builds, making neuro-symbolic systems that 

can change themselves to fight new threats. 

 

Overall, this work is a start for discussion, not a complete answer. The results between major and minor 

attack types offer a base for changing detection goals in new security systems. Later actions need to go beyond lab 

approval using standard tests that match system ability with the computing needs of IoT edge areas with limited 

resources. That progress is still needed to make safe, strong, and usable IoT systems.. 
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