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This paper proposes a novel edge-based, predictive-intelligence system 

for real-time phishing attack detection and response. By integrating 

lightweight AI models with Edge Computing platforms and behavior 

monitoring, the system dynamically adapts to emerging threats. We evaluate 

its performance in terms of detection accuracy, latency, false-positive rates, 

and resource consumption, comparing it to traditional centralized models 

(e.g., GRU+WOA [1]). Results demonstrate superior detection speed 

(average latency 80 ms vs. 250 ms), higher accuracy (96.2% vs. 89.7%), and 

lower false positives (2.1% vs. 5.4%), while operating efficiently on edge 
devices. 
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1. Introduction 

A. Background 

Social engineering-based phishing continues to be one of the most effective cyber threats, with the fraudulent 

use of emails, web pages, sites, and clones to deceive the victims and to obtain their sensitive data. Attackers 

constantly evolve their techniques — sleuthing for highly resembling links, embedding harmful scripts, crafting 

compelling content — in order to bypass traditional security defenses. Static traffic-based systems, or systems that 

are centralized, are inflexible when it comes to new (zero-day) phishing derivatives, and there is also the potential to 

round-trip to the server and expose the user for a longer period of time to damage. 

B. Motivation 

Edge security is a paradigm shift in handling threat detection, especially for latency-critical and privacy-

centric settings. By offloading the computing from the cloud to the device (at the "edge"), systems can make local 

inferences much faster. This allows end-user devices (e.g., smartphones, IoT gateways, and browsers) to detect and 

remediates phishing threats more quickly locally, instead of being dependent on always-on connectivity to the cloud. 

Additionally, compact models like the Gradient Boosted Decision Trees (GBDT), Temporal Convolutional 

Networks (TCN) [2], and the compressed ones (Tiny Transformers) [13] fit into memory and can have real-time 

running on the edge devices. 

C. Contributions 

This research proposes a novel, edge-oriented approach to phishing detection that integrates predictive 

intelligence, behavioral analysis, and adaptive learning. The key contributions of this work are as follows: 

1. Design of an Edge-Deployable Predictive Intelligence Pipeline 
A fully modular and resource-efficient pipeline is proposed for detecting phishing attempts in real time at the 

network edge. The system integrates feature extraction, lightweight classification, and decision-making 

mechanisms, optimized for low-latency operation. 
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2. Integration of Behavior Monitoring, Model Compression, and Dynamic Updates 
The proposed system enhances traditional detection methods by incorporating real-time user behavior analysis 

(e.g., click patterns, navigation flow) and model update mechanisms that allow the system to evolve in response 

to emerging threats. Lightweight models are compressed and optimized for on-device deployment without 

significant loss in accuracy. 

3. Comprehensive Performance Evaluation Against Baseline Models 
The proposed framework is rigorously evaluated against baseline phishing detection models, including 

traditional ML and deep learning classifiers. Metrics such as detection accuracy, latency, CPU/RAM usage, and 

false-positive rate are analyzed across different edge devices and network conditions to validate system 

robustness and scalability 

2. Related Work 

Numerous recent advancements have explored the integration of artificial intelligence and edge computing for 

phishing detection, particularly focusing on enhancing real-time responsiveness, model efficiency, and adaptability 

to novel threats. 

A. AI-Driven Edge Computing for Phishing Detection 

Recent works have emphasized the role of deep learning and federated learning techniques deployed at the edge 

to facilitate real-time threat detection within latency-sensitive environments such as IoT networks [5]. These systems 

allow data processing close to the data source, reducing dependency on centralized infrastructure and enhancing 

privacy. However, several limitations persist, including device resource constraints, interoperability challenges, and 

the absence of unified standards for adaptive AI deployment on edge nodes. 

B. Transformer-Based Phishing Detection 

Transformer architectures, particularly lightweight variants like Distil-BERT, have demonstrated strong 

performance in phishing email detection. These models, when integrated with explainable AI tools, improve not 

only the detection accuracy but also the interpretability of the decision-making process. Attention mechanisms 

within these architectures allow for the identification of subtle semantic cues that often signal phishing attempts 

[6,13]. 

C. Ensemble and Stacked Models for URL-Level Detection 

Hybrid approaches combining traditional feature extraction (such as TF-IDF) with deep learning models like 

LSTM, alongside ensemble classifiers like XG-Boost, have proven effective in handling phishing URL detection 

tasks. These stacked architectures can generalize better across various phishing strategies, especially when 

character-level and structural URL features are jointly leveraged [9]. 

D. Federated and Continual Learning Models 

A novel trend involves combining federated learning with continual learning to create adaptive phishing 

detectors that can evolve over time. Such systems allow distributed nodes to learn locally from user interactions and 

periodically synchronize with a global model. Attention-based classifiers are commonly employed in these 

frameworks, providing robust performance against evolving and zero-day phishing attacks [5,11]. 

E. Hybrid Detection Frameworks in Real-World Environments 

Hybrid systems that integrate multiple detection paradigms—such as rule-based logic, statistical features, and 

machine learning classifiers—have been developed to enhance robustness against adversarial evasion techniques. 

These frameworks report high detection accuracy and demonstrate better real-time efficiency when compared to 

single-model approaches. 

F. Lightweight Transformers for Edge Deployment 

Research into compressed and quantized Transformer architectures, such as Tiny-BERT, highlights their 

feasibility for deployment on constrained edge devices. These models retain a significant portion of the original 

model's predictive power while operating within the strict memory and processing limits of embedded platforms 

[13]. 

G. Multi-Layered Ensemble Techniques 

Multi-model ensemble techniques involving classifiers like Random Forest, Gradient Boosting, Cat-Boost, and 

XG-Boost have also been applied to phishing detection. When combined with advanced feature selection methods, 

these systems achieve very high accuracy. However, their computational requirements can limit their suitability for 

edge deployment unless model pruning or other optimization strategies are applied [9]. 

 

 

 

 



Dijlah Journal of Engineering Science (DJES)                                            Vol. 2, No. 3, Aug., 2025, pp. 120-126 

ISSN:  Printed: 3078-9656, Online: 3078-9664, paper ID: 58 

 

 

122 

 

 

Gaps & Research Opportunities 

 

Table. 1. Identified Gap and Opportunity Addressed by Proposed System. 

Identified Gap Opportunity Addressed by Proposed System 

Resource-heavy models not edge-friendly Lightweight predictive models (GBDT, TCN, Tiny-Transformer) 

Lack of dynamic updating Real-time edge model adaptation using behavior logs 

Absence of behavior-based integration Combines click behavior with URL/hardware features 

Poor interpretability Potential use of explainable-AI (e.g., LIME) on edge if needed 

 

Table. 2. Comparison of different approaches to addressing threats. 

Study Approach Platform Accuracy Latency 

GRU+WOA [1] Statistical & metaheuristic Cloud 89.7% 250 ms 

Ensemble ML [3] Random Forest + SVM Server 91.3% 220 ms 

Edge TCN [2] Temporal CNN Edge (R-Pi) 92.8% 120 ms 

 

 Centralized and static methods poorly address emerging threats. 

 Edge deployment with real-time feedback loops remains underexplored. 

 

3. System Design 

The proposed phishing detection framework is designed as a light-weight, adaptive, and real-time system tailored 

for edge environments. It integrates predictive intelligence, behavioral analysis, and secure update mechanisms to 

enable rapid, localized decision-making without relying on centralized infrastructure. 

 

A. Architecture Overview 

The system architecture is structured in a modular and layered fashion to optimize performance across 

heterogeneous edge devices (e.g., mobile phones, IoT gateways, Raspberry Pi). The architecture comprises six core 

components: 

1. Data Collector: Gathers raw inputs such as URLs, HTTP headers, and user interaction logs (clicks, scrolls, 

navigation behavior). 

2. Feature Extractor: Parses collected data to generate meaningful features—e.g., tokenized URLs, domain age, 

presence of suspicious JavaScript, behavioral metrics. 

3. Predictive Engine: Employs lightweight models (e.g., GBDT, TCN, Tiny-Transformer) optimized for edge 

inference using quantization and pruning [2,13]. 

4. Behavior Analysis Module: Monitors real-time user behavior and identifies patterns consistent with phishing 

attacks (e.g., repeated redirects, session time anomalies). 

5. Decision & Response Module: Aggregates outputs from prediction and behavior analysis to generate final 

classification and execute mitigation steps (e.g., block access, notify user). 

6. Model Update Controller: Connects to a secure cloud service for incremental model updates based on new 

phishing trends or labeled feedback. 

These components are deployed in a micro-service-like structure to facilitate scalability and modular testing. 
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B. System Workflow 

The detection and response cycle (fig.1) follows a tightly integrated workflow designed for low-latency 

execution: 

 

 

    
 

 
 

        
Fig.1. The detection and response cycle. 

 

Step-by-step Description: 
1. User Interaction: A network request (e.g., clicking a URL) initiates the system. 

2. Local Collection: The data collector captures the request metadata and any relevant behavior context. 

3. Feature Extraction: Raw data is transformed into vectors compatible with the deployed ML models. 

4. Prediction: The predictive engine returns a phishing probability or binary classification. 

5. Behavioral Context Check: If available, the behavior analysis module cross-validates predictions with ongoing 

user activity (e.g., suspicious tab-switching). 

6. Decision Logic: A composite decision score is computed; if the score exceeds a threshold, mitigation is 

triggered. 

7. Response Execution: The system may block the connection, display a warning, or log the event. 

8. Model Update (Periodic): Lightweight model patches or updated thresholds are downloaded securely and 

deployed locally. 

This event-driven design ensures that phishing attacks are identified in real time with minimal computational 

load. 

C. Model Selection and Optimization 

The system leverages lightweight models suited for edge computing: 

 GBDT (Gradient Boosted Decision Trees): Fast inference, interpretable, and suitable for structured features. 

 TCN (Temporal Convolutional Networks): Effective for sequential patterns in behavior data [2]. 

 Tiny-Transformer: A compressed Transformer variant, using fewer layers and quantized attention heads to 

retain contextual understanding while reducing memory footprint [13]. 

All models are converted to TFLite or ONNX formats for efficient deployment. Inference time is kept below 100 

ms for all tested platforms. 

D. Edge-Centric Design Considerations 

 Low Power Usage: Designed with battery-powered devices in mind, the system minimizes energy consumption 

by optimizing inference and update processes. 

 Fully Offline Functionality: Prediction and decision-making components run entirely on-device. Cloud access 

is optional, and all communication is encrypted when used. 
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 User Privacy First: Interaction data stays on the device and is only shared if the user gives clear and explicit 

permission. 

E. Security and Update Mechanism 

The model update module securely retrieves signed updates from a trusted cloud source. These updates can 

include: 

 Adjusted feature weights, 

 Revised behavioral thresholds, 

 New routines for defending against adversarial patches. 

Before any update is applied locally, its integrity is confirmed through crypto-graphic hash checks [11]. 

This architecture combines intelligent prediction with edge-level robustness, enabling phishing detection that is 

fast, adaptable, and privacy-aware — well-suited for today’s decentralized digital landscape. 

4. Methodology 

This section describes the complete approach used to build, train, and deploy a real-time phishing detection 

system tailored for edge devices. The workflow is organized into five key stages: data collection, feature 

engineering, model design, edge deployment, and performance evaluation. 

A. Data Collection 

The phishing detection system is built on a comprehensive dataset that blends real-world and simulated inputs: 

 URL-Based Datasets: A total of 50,000 labeled samples were gathered from publicly available phishing and 

legitimate sources, such as Phish-Tank and the Anti-Phishing Working Group (APWG). The dataset was 

carefully balanced to ensure equal representation of phishing and benign URLs. 

 Behavioral Data: Simulated user sessions were created across 10,000 URLs using automated browser 

instrumentation tools. These simulations captured interaction features like click paths, scroll behavior, and dwell 

time to realistically reflect user behavior. This data supports the system’s ability to perform behavior-driven 

phishing detection. 

B. Feature Engineering 

To enable effective predictive modeling, a diverse set of both hand-crafted and dynamic features was extracted 

and engineered across three core categories: 

 URL Features: These include metrics like token count, URL length, character entropy, and domain age 

(retrieved via WHOIS data). Such attributes help identify textual patterns and irregularities often found 

in phishing URLs. 

 Header-Based Features: TLS certificate types, server response codes, and geographical server location were 

used to detect irregular or suspicious server configurations. 

 UI/Behavioral Features: Mouse movement paths, click distribution patterns, and average dwell time were 

recorded to capture atypical interaction behavior often present during phishing attempts. 

All features were normalized and encoded into a unified vector representation suitable for low-latency inference 

on edge devices. 

 

C. Predictive Models 

Three model families were selected and optimized for edge inference based on performance, interpretability, and 

computational cost: 

 Gradient Boosted Decision Trees (GBDT): Implemented using 200 trees with a maximum depth of 5. GBDT 

models are lightweight and interpretable, making them suitable for resource-constrained devices. 

 Temporal Convolutional Network (TCN): A 1D convolutional architecture with five stacked layers was 

designed to capture sequential interaction patterns across user sessions. TCNs offer low inference latency and 

good temporal feature learning. 

 The tiny Transformer: is a streamlined version of the standard Trans-former architecture, featuring six encoder 

layers and four-head self-attention. It was specifically designed to minimize memory usage through techniques 

like aggressive weight pruning and quantization, all while maintaining solid performance [13]. 

All models were originally built using Tensor-Flow and later converted to the Tensor-Flow Lite (TF-Lite) 

format for better compatibility with resource-constrained devices. Compression methods, including weight pruning 

and integer quantization, were applied to make the models suitable for deployment on embedded systems. 

D. Edge Deployment 

The system was deployed and tested on a variety of widely used edge devices: 
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 Raspberry Pi 4: Featuring a quad-core ARM processor and 4 GB of RAM, this device served as a 

representative example of a mid-range IoT platform. 

 Android Edge SDK: The model was packaged as a lightweight app and run using the Tensor-Flow Lite 

interpreter on standard mobile hardware. 

 ESP32 Microcontroller: This platform was used to evaluate the models under extreme resource 

constraints, using highly optimized, stripped-down versions. 

After optimization, the final model sizes were approximately: GBDT (~1.2 MB), TCN (~2.8 MB), and Tiny 

Transformer (~3.4 MB). The deployment pipeline supported real-time predictions with minimal latency, and 

included a mechanism for periodic cloud synchronization to enable model updates. 

E. Evaluation Metrics 

To thoroughly evaluate how the system performs, several key metrics were considered: 

 Accuracy, Precision, Recall, and F1 Score were used to gauge how well the model classifies URLs. 

 Average Detection Latency (in milliseconds) measured the time it takes for the system to analyze a URL and 

return a prediction when running on an edge device. 

 False Positive Rate (FPR) indicated how often legitimate URLs were mistakenly flagged as phishing. 

 CPU and RAM usage were monitored during real-time predictions to understand the system’s resource 

demands. 

 Model Update Time reflected how long, on average, it takes to download and apply model updates over a 

typical Wi-Fi connection, with each update being about 5 MB in size. 

 

V. Results 

A. Detection Performance 

 

Table. 3. Tiny Transformer offers best accuracy with manageable complexity. 

Model Accuracy F1-Score FPR 

Centralized GRU+WOA 89.7% 0.88 5.4% 

Edge GBDT 94.8% 0.95 2.7% 

Edge TCN 95.3% 0.95 2.4% 

Edge Tiny Transformer 96.2% 0.96 2.1% 

 

B. Latency & Resource Usage 

 
Fig. 2: Latency Comparison 
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Fig. 3: CPU & RAM Usage. 

 

C. Model Update Time 

~45 seconds per update over Wi-Fi (5 MB stream). 

5. Discussion 

 Edge models significantly reduce latency and improve detection performance. 

 Dynamic updates ensure adaptability to zero-day attacks. 

 Trade-off: higher accuracy models consume more resources-GBDT is best for constrained devices. 

6. Conclusion & Future Work 

This work introduces a real-time, edge-based predictive system for dynamic phishing detection, achieving 

improved performance over traditional detection approaches. Future plans include: 

1. Extending coverage to voice phishing (vishing) & SMS (smishing). 

2. Implementing federated learning across edge devices. 

3. Conducting field deployment trials. 
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