
Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

14

Parallel Program for calculation of the Matrix determinant of the

Nth order

Ehab Abdulrazak. Alasadi
1
,

1Department of Islamic Science, University of Kerbala, Kerbala, Iraq

Article Info ABSTRACT

Article history:

Received 13, July, 2025

Revised 12, Aug., 2025

Accepted 20, Aug., 2025

 Analyze the possibilities of implementing a parallel algorithm for calculating

the determinant of the Nth order (by modifying it to a suitable form). Design

and implement (in C/C++) a solution based on sending messages between

nodes using the PVM system library. Distribute the load between nodes so

that the calculation time is as small as possible. Find out how the execution

time and calculation acceleration depend on the number of nodes and the

size of the problem (provide a table and graphs). Based on the results,

estimate: the communication latency, for what size the task is (well) scalable

on a given architecture, and what is the maximum size at which the

calculation is still bearable on the available architecture. Discuss the

advantages and/or effectiveness of parallel implementation of individual

algorithms. If the solution requires it, use files for input and output of

matrices where the row of the matrix corresponds to the row of the file and

the column values are separated by spaces or tabs. Unless otherwise stated,

work with real numbers

Keywords:

Parallel program,

PVM,

Distribute system.

Corresponding Author:

Ehab Abdulrazak . AL-ASADI

Department of Islamic Scnience , University of Kerbala

Kerbala, Iraq

Email: ehab.a@uokerbala.edu.iq

1. INTRODUCTION

A distributed system is an application consisting of multiple components

running simultaneously on different computers. These computers must be able to communicate with each other and

be able to work independently, Parallel computing is the simultaneous calculation of a single task on multiple

processors

in order to speed up the calculation. The processor can be either the CPU in a computer or a single node (computer)

in a distributed system. Distributed systems are used for parallel computing in various branches of science. In these

systems, a task is divided into multiple subtasks that are independent of each other, which are then calculated

simultaneously on individual computers, thus reducing the calculation time. Such systems are either homogeneous

or heterogeneous

PVM (Parallel Virtual Machine) is a software package that allows the creation of heterogeneous computer clusters

by connecting computers with UNIX or Windows systems, interconnected by a network. This system is freely

available, highly portable and easy to use, which has contributed to its widespread use for scientific purposes.

PVM is a so-called message passing system, i.e. a system in which

parallel tasks synchronize and exchange information by sending

mailto:ehab.a@uokerbala.edu.iq

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

15

messages. The PVM system itself consists of a daemon that runs on each node of the cluster and a library that is

compiled into the user program. A program using the library services can be written in various programming

languages, most commonly,[3],[4].

The determinant is a function dependent on the dimensions of a matrix that assigns a scalar value to each square

matrix. This value generally expresses the size of the matrix. In the following text, we will understand the

determinant to mean this scalar value.Using the determinant of a matrix, its singularity can be determined. The

determinant is also used to solve systems of linear equations using Kramer's rule, determine the eigenvalues of a

matrix, the orientation of the coordinate system, and solve other problems.Determining the determinant of a matrix,

especially for matrices of larger dimensions, is a computationally demanding task for which it makes sense to design

a parallel algorithm

2. METHOD

The calculation of the determinant generally consists of 2 steps:

1. Modifying the matrix to a suitable equivalent form

2. Calculating the determinant from this form in a suitable way

In the first step, suitable equivalent modifications are applied to the matrix in turn. Its output is a matrix of

the desired form, from which it is possible to calculate the determinant relatively easily apply one of the

known methods of calculating the determinant from a matrix to the resulting matrix. The first step is not

necessary and serves only to speed up the calculation.

Modifying a matrix to a suitable form

 When modifying a matrix from matrix A to matrix B, there are several rules regarding its determinant:

If B was created from A

• by swapping two rows or columns, then det(B) = -det(A)

• by multiplying one row or column by a constant c, then det(B) = c.det(A)

• by adding the product of one row to another row, or by adding one column to another column, then det(B)

= det(A)

The determinant calculated from the modified matrix must therefore be subjected to the appropriate

operations, depending on the rules used in the modification.

Calculating the determinant from the modified matrix

The determinant can be calculated directly from the matrix in several ways:

Calculating the determinant by definition

Let the matrix A = (Ai,j), (where Ai,j is the matrix element in the i-th column and j-th row) be square. Then

• for matrix dimension A = 1, the determinant is det(A) = A1,1

• for matrix dimension A = 2, the determinant is det(A) = A1,1 A1,2 – A2,1 A1,2

• for matrices of dimension n, the Leibnitz formula can be used

det(A) = sum(sign(p).prod(Ai,p))

where

• sum is the function of the sum of the terms over all their permutations

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

16

• sign is a function whose output is 1 if an even permutation p follows and -1 if an odd permutation p

follows (which was created by an even or odd number of exchanges of elements in it)

• prod is the function of the product of terms for i = 1 to n

Example of the method of calculating the determinant according to Leibnitz's formula for n = 3:

det(A) = A1,1 A2,2 A3,3 + A1,3 A2,1 A3,2 + A1,2 A2,3 A3,1 +

+ A1,3 A2,2 A3,1 + A1,1 A2,3 A3,2 + A1,2 A2,1 A3,3

This results in n! sum terms, so the method is not suitable for large matrices.

Laplace Decomposition

Using the Laplace decomposition, the determinant of a matrix can be calculated by decomposition along

any row or column. The calculation by decomposition of row i of a matrix A of dimension n can be written

as follows:

det(A) = sum(Ai,j (-1)i+j Mi,j)

where

• sum is the function of the sum over all j = 1 to n

• Mi,j is the determinant of the submatrix of matrix A, which was created by removing row i and column j

from matrix A.

Additional rules for calculating determinants

• The definition of the determinant implies that the determinant of a triangular matrix is equal to the

product of the members along the main diagonal, i.e. A1,1 to An,n for a matrix of dimension n

• For square matrices A and B,

det(AB) = det(A)det(B).

• The determinant for a matrix with a row or column of zeros is equal to 0.

• The determinant of a matrix with 2 identical rows or columns is equal to 0.

Similar methods for solving by modifying a matrix

Gaussian elimination method

Gaussian elimination method is an algorithm whose input is an arbitrary matrix and the output is a matrix

containing rows defined as follows:

The first non-zero term from the left is equal to 1, the other terms are zero.

This result is achieved by the operations of exchanging rows, adding a row and the multiple of another row,

and dividing rows.

The algorithm has a complexity of O(n3) and is numerically quite unstable when working with real

numbers. To increase stability, so-called pivoting is used, which is the rearrangement of rows so that the

largest term of the column is always on the main diagonal (this is partial pivoting).

After completing the Gaussian elimination algorithm, it is easy to calculate the determinant from the matrix

thus obtained as the product of the terms on the main diagonal.

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

17

3. RESULTS AND DISCUSSION

Rough algorithm design

Solutions based on the definition of the determinant or Laplace's decomposition formula are too complex to be used

effectively to calculate matrices of larger dimensions (for n = tens to hundreds).

The complexity of the elimination algorithm (matrix modification) is approximately O(n3), which is acceptable even

for larger n. It is therefore advantageous to base the solution on this algorithm.

Basic steps of the algorithm

1. Finding a pivot for each row and rearranging the matrix so that the pivots are on the main diagonal (partial

pivoting).

2. Modifying the matrix to the form of a lower (or upper) triangular matrix.

3. Calculating the determinant as the product of the terms on the main diagonal of the triangular matrix.

It will be desirable to implement parts 1 and 2 of the algorithm distributed.

Detailed algorithm design - partial pivoting

Description

In each column of the matrix, the largest number is found from the numbers below the main diagonal of the matrix.

The row containing this number is swapped with the row containing the element of the main diagonal of this

column. The change in sign of the resulting determinant is noted.

Pseudocode

(A[i][j] is the element at the i-th row and j-th column)

det_sign = 1 //1 = +, 0 = -

for (i = 0; i < size; i++)

max_val = A[i][i]

max_index = 0

for (j = i+1; j < size; j++)

if (A[j][i] > max_val)

max_val = A[j][i]

max_index = j

end_if

end_for

if max_index != 0

swap rows with indices i and max_index

det_sign = 1-det_sign

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

18

end_if

end_for

Detailed algorithm design – modification to lower triangular matrix

Description

In each column i, for each row j, below the main diagonal, calculate the quotient of the member in column i and row

j with the member in column i and row with the main diagonal – row i*. Then, it multiplies row i by this value (this

is an intermediate result and is not stored in the matrix) and then subtracts this row from row j.

 at this point, it is necessary to check whether the member A[i][i] is not equal to zero. If so, it is necessary to find the

pivot in column i in one of the rows below the diagonal and swap these two rows.

Pseudocode

for(i = 0; i< dimension; i++)

if A[i][i] == 0

//pivoting for this column and rows below //diagonal

end_if

if A[i][i] == 0

return det = 0

end_if

for(j = i+1; j < dimension; j++)

share = A[j][i] / A[i][i]

row j = row j – (row i * share)

end_for

Parallelization of the algorithm

Point 1 and especially point 2 of the proposed algorithms are computationally demanding.

Unfortunately, in point 1, the results of finding pivots in the following columns depend on the modifications that

were performed on the previous columns (since entire rows are exchanged). This fact makes parallelization of this

part of the algorithm very difficult.

Point 2 – modifying the matrix to lower triangular is easier to adapt to parallel calculation. Although it would be

difficult to decompose the calculation of individual columns, a relatively simple parallel calculation of new row

values is possible, since these are independent of each other.

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

19

There is little point in modifying point 3 of the algorithm into a parallel form, since this is only a computationally

fairly undemanding part.[6]

Modified pseudocode of point 2.

for(i = 0; i< dimension; i++) //serial part

if A[i][i] == 0

//pivoting for this column and rows below //diagonal

end_if

if A[i][i] == 0

return det = 0

end_if

for(j = i+1; j < dimension; j++) //parallel part

//distribution of rows to nodes

share = A[j][i] / A[i][i]

row j = row j – (row i * dimension)

//collection of changed rows from nodes

end_for

Description of modified point 2 of the algorithm

The central computer sequentially passes through all columns of the matrix (total dimension of cycles). After

handling the condition when the term on the diagonal is zero, in each cycle it is necessary to process (dimension –

index_of_current_cycle) rows. These are distributed as evenly as possible among all nodes (the central computer

may be among them). After determining the value of all rows, the next column follows – the next cycle.

Data transferred between computers and synchronization

At the beginning of the cycle, it is necessary to calculate new values for (size – index_of_current_cycle) rows. In

addition to the row being processed, each node also needs a row in which the given column contains a member on

the main diagonal (in pseudocode, this is row i). So, at the beginning of the cycle, each node receives ((size –

index_of_current_cycle)/number_of_nodes + 1) rows. After processing, it sends ((size –

index_of_current_cycle)/number_of_nodes) rows back to the central computer. Sending rows also solves

synchronization - after receiving all rows from this column, the central computer moves to the next column and

starts the next cycle.

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

20

Input and output requirements

The input must be a square matrix with elements from the set of real numbers.

The proposed algorithm has a relatively high complexity; therefore, it is advisable to check the size of the input

matrix and for very large n not to run the algorithm at all (the limit will be determined experimentally).

The output will be the determinant of the matrix if the calculation is successful. The alternative output will be a

value signaling the non-existence of a determinant for the given matrix and in other cases an error output.

PROGRA M IMPLEMENTATIONS

The application was implemented in C++ using an object-oriented approach.

The core of the application are the following classes:

• Matrix class – is used to store a matrix and work with the values it contains.

• slaves class – used to create and terminate subordinate processes intended for calculation (slaves) and

communicate with them

The following methods are important:

• Matrix::load – loads a matrix from a file on disk

• Matrix::pPivot – finds the pivot (the member with the largest absolute value) in one of the columns of the matrix

and swaps the rows so that the pivot is on the main diagonal

• Matrix::dTrojuholnik – adjusts the matrix to lower triangular

• Matrix::det – calculates the determinant of a lower triangular matrix

• slaves::slaves – constructor, creates a specified number of slaves

• slaves::~slaves – destructor, sends termination messages to all slaves

• slaves::isend, slaves::dsend – wrapper functions for sending int and double values to slaves[1],[3].

• number of nodes on which slaves are running (n [nodes])*

* it is enough to monitor the number on which slaves are running, because only these perform the

computationally/time-intensive part

Table (1) Dependence of total Time on the number of nodes and matrix size

sekv. 1 2 4 6 8 10

100 x 100 0,0707 3,1628 2,328 1,878 1,791 1,896 1,8045

200 x 200 0,5964 23,205 13,5 11,57 10,8917 10,2314 11,2783

400 x 400 4,755 111,451 86,160 71,435 63,605 62,900

n
size

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

21

masterTime[s] = userTime + systemTime

Table(2) Dependence of master Time on the number of nodes and matrix size

sekv. 1 2 4 6 8 10

100 x 100 0,072 0,4933 0,585 0,604 0,58 0,6147 0,6227

200 x 200 0,5918 3,2233 3,3983 3,6211 3,6717 3,9429 3,8717

400 x 400 4,7525 20,930 21,33 23,77 24,44 24,75

Tables description

The time values in the tables are the average of several measurements. The number of measurements depended on

the size of the problem (length of calculation) and time options. For a 100x100 matrix, each measurement was

performed at least 10 times. For a 200x200 matrix, at least 5 times. For a 400x400 matrix, at least 2 times. For a

400x400 matrix, the results are therefore more of an indicative nature; this matrix was used to better estimate the

maximum size of the task. The value for a 400x400 matrix and 10 nodes was not measured for time reasons.

The value of masterTime[s] was created by the sum of the values of userTime and systemTime. It is not used to

answer important questions, but only to show the length (amount) of the master calculation compared to the total

calculation time.

The values in the column marked “seq.” correspond to the measured values when using the sequential version of the

algorithm. A graphical representation of the measured values can be found in Appendix A of this document.

Speedup calculation

S(s,n) = T(s,1)/T(s,n)

Where

• T(s,1) is the computation time of the sequential algorithm

• T(s,n) is the computation time of the parallel algorithm

 Table(3) Dependence of acceleration on the number of nodes and matrix size

1 2 4 6 8 10

100 x 100 0,0224 0,0304 0,0376 0,0395 0,0373 0,0392

200 x 200 0,0257 0,0442 0,0515 0,0548 0,0583 0,0529

400 x 400 0,0427 0,0552 0,0666 0,0748 0,0756

4. CONCLUSION

The result is speedup values from 0.02 to 0.08, which are very bad values. They are much smaller than 1, which

means that the sequential algorithm was significantly faster than the parallel version of the algorithm. This is due to

the significant additional overhead in the parallel algorithm and the load on the bus through which the master

communicates with the slaves (and the subsequent communication delay). The overhead of the parallel algorithm is

due to the rather fine granularity of the algorithm and consequently the large amount of data that the slave needs to

work.

n
size

n
size

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

22

A graphical representation of the dependence of the speedup on the number of nodes and on the size of the task can

be found below.

0

5

10

15

20

25

sekv. 1 2 4 6 8 10

to
ta

lT
im

e
 [

s
]

n [nodes]

totalTime for dimention 200 x 200

Fig(1) total time vs no of nodes

0

0.5

1

1.5

2

2.5

3

3.5

sekv. 1 2 4 6 8 10

to
ta

lT
im

e
 [

s
]

n [nodes]

totalTime for dimention 100 x 100

Fig(2) total time vs no of nodes

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

23

0

20

40

60

80

100

120

sekv. 1 2 4 6 8 10

to
ta

lT
im

e
 [

s
]

n [nodes]

totalTime pre all dimentions

100 x 100

200 x 200

400 x 400

Fig(3) Total time vs no of nodes

0

50

100

150

100 x 100 200 x 200 400 x 400

to
ta

lT
im

e
[s

]

matrix size(rowsxcolumns)

time calculated from the dependence of the
matrix size

n=1

Fig(4) time vs matrix size

REFERENCES

[1] YoLinux: YoLinux Tutorial“POSIX thread (pthread) libraries“,

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html,accessed 15.Dec.2024

[2] Eric W. Weisstein“Geometric Mean“ http://mathworld.wolfram.com/GeometricMean.html,

accessed 15.Dec.2024 .

Dijlah Journal of Engineering Science (DJES) Vol. 2, No. 3, September, 2025, pp. 14-25

ISSN: Printed: 3078-9656, Online: 3078-9664, paper ID: 48

24

[3] Dick. B,et al,” PThreads Programming: A POSIX Standard for Better Multiprocessing ,

O'Reilly Media,1996.

[4] David.B,“ Programming with POSIX Threads, Addison-Wesley Professional,1997.

[5] W. S, Stephen .R,” Advanced Programming in the UNIX Environment, Addison-

Wesley Professional,2013.

[6] Hesham El-Rewini , “Advanced Computer Architecture and Parallel Processing”,

Wiley-Interscience,2008.

[7] Alasadi, E. (2024).” Parallel algorithm for testing the singularity

of an N-th order matrix”, Al-Bahir Journal for Engineering and

Pure Sciences, 4(2), 1.

[8] RAl-Asadi, E. A. (2015). “Finding N prime numbers using

distrusted computing PVM (parallel virtual machine)”. Int. J. Eng.

Technol, 5(11), 578-588.

BIOGRAPHIES OF AUTHORS

The recommended number of authors is at least 2. One of them as a corresponding author.

Please attach clear photo (3x4 cm) and vita. Example of biographies of authors:

Author 1 picture Lecturer. Ehab A. Alasadi, Received His MSc. degree in the computer engineering from

University of Technology In Slovakia –in 2009 and Doctor of. He has been a full-time

lecturer in Islamic Science collage -, Kerbala, Iraq, since March 2010. He, ongoing He can

be contacted at email: ehab.a@uokerbala.edu.iq

