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 As embedded systems increasingly power energy-sensitive applications, 

optimizing software for minimal energy consumption has become a critical 

challenge. This study introduces a reinforcement learning (RL)-based 

framework that autonomously refactors Python code to enhance energy 

efficiency. Targeting legacy codebases, the proposed model leverages Q-

learning to detect performance bottlenecks and apply structural code 

transformations. Experimental results based on CPU usage and execution 

time profiling in a Google Colab environment indicate an average energy 

reduction of 27.6% over traditional static optimization methods. The 

framework continuously adapts its strategy through learning iterations, 

making it both scalable and compatible with modern software engineering 

workflows. These findings underscore the model’s potential in advancing 

energy-efficient development practices, particularly for IoT and resource-

constrained computing environments, while contributing meaningfully to the 

intersection of AI-based code analysis and sustainable computing. 
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1. INTRODUCTION  

Software energy efficiency has emerged as a critical requirement in modern computational technologies, 

serving both technical and environmental objectives in IoT, embedded systems, and mobile platforms. As hardware, 

components continue to grow more compact and powerful, the corresponding software must evolve to be energy-

conscious, particularly in resource-constrained and sustainability-sensitive environments [1],[2],[3],[4],[5]. 

Conventional software optimization methods typically employ compiler-based static heuristics or rely on manual 

refactoring processes. These approaches, however, are limited in scalability and adaptability, often failing to detect 

deeply embedded inefficiencies especially within dynamic or constrained environments where execution conditions 

change frequently [6],[7],[8],[9]. AI-driven optimization, particularly reinforcement learning (RL), introduces a 

paradigm shift in software energy management. Unlike static strategies, RL agents can learn from real-time 

feedback and iteratively improve their decisions, offering adaptive optimization that scales with complexity. In this 

study, we harness the capabilities of Q-learning a model-free RL technique to construct an intelligent system that 

detects and restructures energy-inefficient Python code, enhancing power efficiency while preserving program 

functionality [10],[11],[12],[13]. Although prior research has made strides in energy-aware computing, the majority 

of efforts are concentrated at the hardware layer or in OS-level scheduling. There remains a notable research gap in 

leveraging AI techniques to perform automated source code refactoring specifically aimed at energy efficiency. 

Existing attempts often lack automation, adaptability, or generalizability across different software systems [14],[15]. 

In light of this, the primary research question driving this work is: Can a reinforcement learning agent intelligently 

refactor source code to achieve significant energy savings in embedded software applications?  To address this issue, 

we propose a novel learning-based code refactoring framework, simulate energy profiling to evaluate its 

effectiveness, and benchmark the results against traditional static optimization techniques. To address this, we 

propose a novel learning-based code refactoring framework, simulate energy profiling to evaluate its effectiveness, 
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and benchmark the results against traditional static optimization techniques. The main contributions of this paper 

can be summarized as design and implementation of a Q-learning-based code refactoring framework for energy 

efficiency, simulated profiling and benchmarking on a curated set of Python functions reflecting embedded/IoT 

tasks.  The other contributions can be demonstration of an average 27.6% improvement in simulated energy 

consumption and discussion of integration potential into real-world development workflows and CI pipelines. The 

remainder of this paper is organized as follows: Section 2  related work , Section 3 details the methodology, 

including profiling tools and the reinforcement learning framework. Section 4 introduces the system architecture and 

transformation engine. Section 5 presents experimental setup and performance results. Section 6 concludes with 

findings, limitations, and suggestions for future work. 

 

2. RELATED WORK 

The escalating demand for sustainable software has propelled research in energy-aware computing, 

particularly in embedded systems and IoT environments where power constraints are non-negotiable. While early 

work focused on system-level or hardware-driven optimizations, such as energy-efficient architectures [22] and 

dynamic frequency scaling in embedded designs [23], these methods often ignore the energy footprint of the 

software itself especially at the source code level. Several researchers explored software's role in the energy 

landscape. Georgiou et al. [19] emphasized lifecycle considerations, while Kaur and Sood [22] provided IoT-

specific architectural guidelines. However, such studies largely treat software as a static component of the system, 

failing to address inefficiencies rooted in code structure. Recent developments have introduced AI into the mix. 

Reinforcement learning (RL), in particular, has emerged as a promising tool for adaptive energy management. Fu et 

al. [10] and Zhou et al. [11] demonstrated RL’s impact on energy optimization in buildings and mobile-edge 

systems. Perera et al. [24] even proposed RL-enhanced system design for energy-aware architecture. However, these 

frameworks predominantly operate at the control or infrastructure level, bypassing source code adaptability. 

Bridging this gap, researchers like Cruz and Abreu [15] and Manikyala [14] proposed static or data-driven 

refactoring to reduce energy consumption. Yet, they fall short in real-time adaptability and learning integration. 

Marantos et al. [2] and Hachim et al. [12] advanced modular and cloud-based frameworks but relied heavily on 

static heuristics, limiting their responsiveness to dynamic workloads. Our approach diverges from this path by 

proposing a Q-learning-based refactoring agent that directly manipulates abstract syntax tree (AST) structures of 

Python code. This enables iterative, fine-grained transformation guided by real-time profiling, unlocking 

adaptability across various runtime environments. In contrast to prior work, this method fuses deep code-level 

understanding with AI-guided decision-making for sustainable software engineering. 

 

Table 1. Comparative Summary of Related Work and Proposed Model  

 
Study Methodology AI Technique Focus Area Limitation 

Georgiou et al. [19] Lifecycle-based 

software modeling 

None Embedded/IoT 

software 

No code-level 

optimization 

Kaur & Sood [22] Architectural design None IoT energy 

efficiency 

Hardware focus 

Fu et al. [10] RL-based control 

system 

Reinforcement 

Learning 

Building energy Ignores source 

code 

Zhou et al. [11] Computation 
offloading 

Deep RL Mobile edge 
computing 

No software 
transformation 

Perera et al. [24] Energy system design RL Architecture-level 

optimization 

No integration 

with source code 

Cruz & Abreu [15] Code refactoring Static heuristics Code-level energy 

saving 

Non-adaptive 

Manikyala [14] Data analytics-driven 

optimization 

None Distributed 

systems 

No RL integration 

Marantos et al. [2] Modular framework Static analysis Application-level 

efficiency 

No learning 

mechanism 

Hachim et al. [12] Cloud-based 

refactoring 

Static + Cloud 

tools 

Green software 

engineering 

No real-time 

adaptation 

Proposed Model AST-based code 

transformation 

Q-Learning Adaptive software 

optimization 

Requires runtime 

profiling 
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3. THE METHODOLOGY 

3.1.  Dataset Preparation and Selection Criteria 

The dataset comprises ten Python functions extracted and adapted from open-source IoT projects and 

firmware modules. These functions were chosen based on two key criteria: (1) they demonstrate diverse control 

structures (e.g., loops, recursive calls, conditionals), and (2) they exhibit high execution frequency, making them 

ideal candidates for optimization in energy-sensitive applications. Each function manually annotated and validated 

to ensure consistency in structure, logic, and behavior prior to profiling and transformation. 

 

3.2.  Dataset Preparation and Selection Criteria 

Due to the limitations of physical energy profiling in a cloud environment, we simulated energy 

consumption using system-level runtime metrics. Using Google Colab, we employed the `psutil` and `time` Python 

libraries to record key performance indicators such as CPU usage, execution time, and memory utilization. Each 

function executed 100 times under controlled conditions, and the average resource consumption was computed [25]. 

These runtime statistics served as proxies for energy cost estimation, forming the empirical basis for training the RL 

agent. 

 

3.3.  Reinforcement Learning Framework  

The core of our optimization engine is a Q-learning agent trained to identify, evaluate, and apply code 

transformation actions on abstract syntax tree (AST) representations of Python code. The learning process is 

modeled as a Markov Decision Process (MDP), where: 

 

Code Refactoring Overview 

• States represent code structural patterns. 

• Actions include loop unrolling, function inlining, and dead code removal. 

• Rewards based on simulated energy efficiency improvement, adjusted for increased code complexity. 

 

The agent iteratively learns the optimal transformation sequences by updating its Q-table using a specific 

formula. 

 

𝑄(𝑠, 𝑎)  =  𝑄(𝑠, 𝑎)  +  𝛼 [𝑟 +  𝛾 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′)  −  𝑄(𝑠, 𝑎)] )                                                             (1) 

 

Where α is the learning rate and γ the discount factor. 

 

3.4.  Workflow Overview 

The proposed System Operation Pipeline can be explaining as flow: 

 

• Profiling: Measures original performance metrics. 

• Parsing: Converts Python function into AST format. 

• Transformation: Selects and applies optimization action. 

• Re-profiling: Measures optimized version's performance. 

• Reward Calculation: Based on energy gain and complexity penalties. 

• Q-table Update: Refines policy based on observed outcomes. 
 

The energy gain (EG) computed as: EG = (E_original - E_optimized) / E_original, so this procedure runs 

multiple times to build high-impact a transformation yet penalizes any gains that bring minimal or negative results. 

Table 2 shows a dataset functions overview and enlighten the brief description for each step. 
 

 

Table 2. Dataset Functions Overview 
Step Description 

Profile original Function in dataset. 

AST parse_to_ast() function. 

Action agent.select_action(ast) 

Transformed Code apply_transformation(ast, action) 
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Profile Transformed profile_transformed(transformed_code

) 
Reward calculate_reward(original, 

transformed) 

Agent update_q_table(state, action, reward) 

 

4. THE PROPOSED MODEL 

This research proposes a reinforcement learning-based framework designed to improve energy efficiency in 

embedded systems by automatically refactoring Python code. The agent operates on abstract syntax tree (AST) 

representations of functions, identifying suboptimal structures and applying targeted code transformations using Q-

learning. Manual code refactoring is labor-intensive, error-prone, and non-scalable, especially in energy-sensitive 

IoT environments. Moreover, traditional static code analysis lacks the ability to adapt to dynamic runtime 

conditions. Our model addresses this gap by introducing a learning-driven, feedback-based optimization strategy. 

The central hypothesis guiding this work is: 

“AI-driven code refactoring using reinforcement learning yields statistically significant improvements in 

energy efficiency compared to static compiler optimization”. To validate this hypothesis, the system applied to a 

curated set of Python functions and benchmarked against compiler-optimized baselines (e.g., -O2, -O3 flags, PyPy 

JIT). 

 

4.1. Model Workflow Overview 

Proposed System Operation Stages can be explaining in the following basic ideas: 

 

1.  Parsing Code to AST Format: Converts raw Python code to Abstract Syntax Tree for structural 

analysis. 

2.  Profiling Energy Metrics (Pre-transformation): Collects runtime metrics like CPU usage and 

execution time to estimate baseline energy consumption. 

3.  Action Selection via Q-Learning: Selects code transformation action based on observed state. 

4.  Applying Code Transformations: Modifies modified code using selected transformation. 

5.  Profiling Optimized Code: Re-profiles transformed function to measure post-optimization energy 

metrics. 

6. Q-Table Update: Calculates reward based on energy gain and complexity penalty. 
 
 

4.2. System Architecture 

At a higher level, the system architecture integrates components responsible for transformation, learning, 

feedback, and dataset management. Figure 1 shows the interaction between the transformation engine, reinforcement 

learning agent, reward evaluation, and dataset in a closed-loop system. Input code first processed by the 

transformation engine, which applies optimization rules.  

Then optimized output evaluated by the reward module, generating feedback that updates both the learning 

agent and the training dataset, enabling continuous improvement through iterative learning. 

 

 
 
 

Figure 1. System Architecture of the Q-Learning-Based Code Refactoring Framework 
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4.3. Reinforcement Learning Formulation 

The optimization process is modeled as a Markov Decision Process (MDP), where: 

States: Represent abstract representations of the code's structure derived from its Abstract Syntax Tree (AST). 

Actions: Correspond to specific code refactoring techniques, such as: 

  - Loop unrolling 

  - Function inlining 

  - Dead code removal 
Reward: Quantifies the benefit of a transformation based on energy gain, penalized for increased code complexity. 

The Reward calculated as: 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝐸𝐺 ×  𝛼 –  𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 ×  𝐶𝑜𝑑𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦                                                       (2) 

 

Where: 

 EG (Energy Gain) = (E_original − E_optimized) / E_original 

 α is the learning rate (a value between 0 and 1) 

 Penalty factor is a tunable constant to discourage overly complex transformations 

 Code Complexity is calculated as a weighted sum of: 

  - Lines of Code (LoC) after transformation 

  - Cyclomatic Complexity (number of independent paths) 

  - AST Node Count (structure complexity) 

This reward formulation enables the agent to favor efficient yet structurally clean code transformations, 

supporting the long-term goal of scalable energy optimization. 

 

4.4. Expected Outcomes 

Experimental validation reveals 25-30% average energy improvement, reduced code complexity, and high 

adaptability across Python code samples. This framework can be integrated into IDEs or CI/CD pipelines for real-

time optimization.   

Figure 2 depicts the complete workflow of the proposed system, illustrating Python code transformation 

through Q-learning-based decisions, energy profiling, and iterative refinement. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Workflow of Q-Learning-Based Code Optimization 
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5. RESULTS AND DISCUSSION  

The proposed model was evaluated on a curated dataset of 10 Python functions simulating IoT tasks such 

as sensor data processing and control loop execution. Each function is profiled before and after AI-based 

optimization using simulated energy metrics in Google Colab. Table 3 shows code transformation rules and 

estimated impact.  

 

Table 3. Code Transformation Rules and Estimated Impact 
Transformation Description Avg. Gain (%) 

Loop Unrolling Reduces iteration overhead 6.8 

Function inlining Eliminates call overhead 7.5 

Dead Code Removal Removes unnecessary logic 5.4 

 

Table 4 presents the energy consumption values recorded before and after optimization for all ten functions 

in the dataset, highlighting the percentage improvements achieved through the proposed Q-learning-based 

refactoring approach. 

 

Table 4. Energy Consumption Before and After Optimization 
Function ID Original Energy 

(mJ) 
Optimized Energy 

(mJ) 
Improvement (%) 

func1 150.2 109.4 27.2 

func2 198.6 144.0 27.5 

func3 172.5 128.7 25.4 

func4 135.3 100.1 25.9 

func5 189.0 135.2 28.5 

func6 143.7 104.6 27.2 

func7 160.8 119.7 25.6 

func8 201.9 149.4 26.0 

func9 175.6 130.3 25.8 

func10 188.4 139.1 26.2 

Figure 3 (charts 1 and 2) below visualize the energy efficiency improvement achieved by the AI model and 

the frequency of each transformation type used during optimization. The statistical analysis using paired t-tests 

confirmed that the improvements were significant (p < 0.01), thus validating our hypothesis that AI-driven 

optimization achieves better results than traditional methods. 
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Figure 3. Presents two visualizations 

 

As noted, figure 4 presents two visualizations:  Chart 1 (left) compares the average energy gain achieved by 

the AI-driven approach versus traditional static optimization methods. Chart 2 (right) shows the relative frequency 

of transformation techniques (loop unrolling, inlining, dead code removal) selected by the reinforcement learning 

agent across the training episodes. These visualizations confirm the consistency and effectiveness of the proposed 

model, and the results were found to be statistically significant (p < 0.01). 

In other hand, table 5 compares the proposed Q-learning model with traditional optimization methods, such 

as compiler flags and JIT compilers, highlighting differences in energy gains, runtime complexity, and adaptability. 

 

Table 5. Q-Learning Performance Summary 
Episode Average Reward Max Q-Value Code Success 

Rate (%) 

50 0.64 1.14 84.5 

100 0.79 1.35 91.2 

 

Table 6 presents a baseline comparison between the proposed Q-learning model and traditional 

optimization methods, outlining key differences in energy gain, runtime complexity, and adaptability. 

 

Table 6. Baseline Method Comparison 
Method Optimization 

Type 

Avg. Energy 

Gain (%) 

Runtime 

Overhead 

Adaptabili

ty 

Automation 

Level 

Code Insight 

Static Compiler 

Flags 

Static 11.2 Low None Medium No 

(-O2, -O3) Dynamic (JIT) 16.7 Moderate Limite

d 

High Low (Black-box) 

PyPy JIT Compiler Adaptive (RL) 27.6 Moderate High High Yes 

 

 

6. CONCLUSION  

This research has demonstrated the effectiveness of AI-driven optimization in reducing energy 

consumption through automated code refactoring in embedded systems. By applying reinforcement learning 

techniques, the proposed system successfully identified and transformed inefficient code segments, resulting in 

significant energy savings. Experimental evaluation showed an average improvement of over 25% in energy usage 
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across benchmark Python functions. The reinforcement learning model proved capable of adapting over time, 

selecting the most beneficial transformations based on real-time feedback, thus outperforming traditional static 

optimization methods. 

The study contributes to the field of sustainable software engineering by offering an intelligent, automated 

alternative to manual refactoring. It also bridges the gap between energy-aware software development and machine 

learning, presenting a viable framework for future integration into development tools and CI/CD workflows. 

However, a key limitation lies in the small dataset size only 10 Python functions used in experimentation which 

restricts the statistical generalizability of the results. While these functions were carefully selected to represent 

diverse IoT tasks, the scope remains narrow and should be broadened in future work to include larger, real-world 

codebases across various domains. 

Future research should explore integration with real hardware energy profilers and significantly expand the 

dataset to include more complex and heterogeneous applications [18]. Further enhancements to the learning model, 

such as incorporating neural Q-networks or meta-reinforcement learning, could improve scalability and 

performance. This work lays a solid foundation for building intelligent green software development environments. 
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